gramophone – A hybrid approach to grapheme-phoneme conversion

Kay-Michael Würzner, Bryan Jurish
{wuerzner,jurish}@bbaw.de

FSMNLP Universität Düsseldorf 24th June 2015

2015-06-24 / FSMNLP / Universität Düsseldorf

Overview

The Task

Finding the pronunciation of a word given its spelling

The Challenge: Ambiguity

- a phoneme may be realized by different characters
- a character may be represented by different phonemes

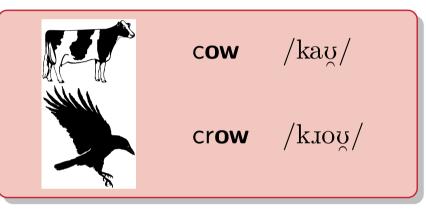
Our Approach: A combination of

- a hand-crafted rule set controlling segmentation and alignment,
- a conditional random field model for generating transcription candidates, and
- an N-gram language model for selecting the "best" grapheme-phoneme mapping

- 1. Grapheme-phoneme conversion and its applications
- 2. Existing approaches
- 3. The gramophone approach
 - (a) Alignment/Encoding
 - (b) Transcription
 - (c) Rating
- 4. Comparative evaluation and error analysis
- 5. Discussion & Outlook

Grapheme-phoneme conversion: Problem description

- Symbolic representation of the pronunciation of words
- Orthography is ambiguous w.r.t. pronunciation, phonetic alphabets allow for an unambiguous representation



 Complex alignment: Single characters may be represented by multiple phonemes (and vice versa)

Grapheme-phoneme conversion: Applications

Text-to-speech systems

(Black & Taylor 1997)

(Jurish 2010)

Improvement of speech signal synthesis by disambiguation of the input text

Spelling correction / "canonicalization"

Phonetic transcriptions as a normal form for identifying spelling variants

Speech recognition

Inverse application of g2p models

Pronunciation dictionaries

 Generation of transcriptions or transcriptions candidates especially in compounding languages

(Galescu and Allen 2002)

(TC-Star project; DWDS)

Previous work: Rule-based approaches

- Inspired by The Sound Pattern of English
- Equivalent to regular grammars and rewriting systems
- Successful model for g2p converters in many languages
- Used in various text-to-speech systems, e.g.
 - MITalk
 - TETOS
 - festival

Drawbacks:

- Expertise and effort required in their production and maintenance
- Treatment of exceptional pronunciation e.g. in loan words (or even worse *compounds* of foreign and native words)

(Chomsky & Halle 1968) (Johnson 1972)

> (Allen et al. 1987) (Wothke 1993) (Taylor et al. 1998)

Versaillesdiktat

/versaidiktart/

engl. 'Versailles diktat'

Previous work: Statistical approaches

- Automatic inference of regularities in the correspondence of spellings and pronunciations from data (i.e. word+transcription pairs)
- Many large data sets exist
 - NETTalk
 - CELEX
 - wiktionary
- Many more existing approaches
 - Neural networks
 - Joint-sequence N-gram models
 - Conditional random fields

Drawback:

 No direct control of results, linguistically implausible transcriptions may be inferred (cf. Reichel et al. 2008) (Sejnowski & Rosenberg 1987) (Bisani & Ney 2008) (Jiampojamarn & Kondrak 2009)

 $\textit{Getue} \mapsto */g \texttt{atfa}/$

engl. 'fuss'

Starting point

Association of transcriptions with entire words

 \rightsquigarrow Alignment on the grapheme-substring level necessary

 \blacksquare n:m relation between grapheme-phoneme string pairs

 $n,m\in\mathbb{N}\setminus\{0\}$

Starting point

Association of transcriptions with entire words

→ Alignment on the grapheme-substring level necessary

 \blacksquare n:m relation between grapheme-phoneme string pairs

 $n,m\in\mathbb{N}\setminus\{0\}$

ph	oe	n	i	х	
\$	\uparrow	\uparrow	\uparrow	\uparrow	
f	ix	n	Ι	ks	

Starting point

Association of transcriptions with entire words

~ Alignment on the grapheme-substring level necessary

n: m relation between grapheme-phoneme string pairs

Approaches

- Numerous existing alignment methods
- Simplify the n:m relation to a more tractable case

(cf. Reichel 2012) $n, m \in \{0, 1\}$

 $n, m \in \mathbb{N} \setminus \{0\}$

Starting point

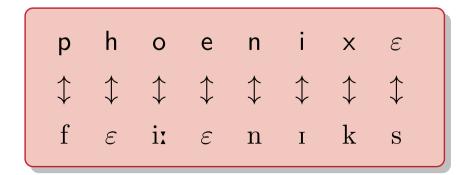
Association of transcriptions with entire words

~ Alignment on the grapheme-substring level necessary

 \bullet n:m relation between grapheme-phoneme string pairs

Approaches

- Numerous existing alignment methods
- Simplify the n:m relation to a more tractable case



(cf. Reichel 2012) $n, m \in \{0, 1\}$

 $n, m \in \mathbb{N} \setminus \{0\}$

Starting point

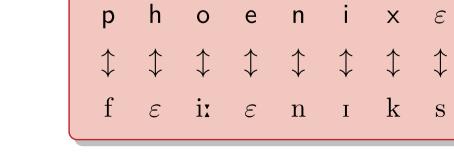
Association of transcriptions with entire words

~ Alignment on the grapheme-substring level necessary

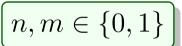
n: m relation between grapheme-phoneme string pairs

Approaches

- Numerous existing alignment methods
- Simplify the n:m relation to a more tractable case
- Application of some Levenshtein-like mechanism



(cf. Reichel 2012)



```
(Levenshtein, 1966)
```

Alternatives?

- Deletion doubtful in the context of grapheme-phoneme correspondence
- Inference of many-to-many alignments error-prone (Jiampojamarn et al. 2007)
- Linguistically motivated alignment desirable

Constraint-based alignment

- Manual definition of possible mappings between grapheme sequences and phonemic realizations $M \subset (\Sigma_{G}^{+} \times \Sigma_{P}^{+})$
- Compiled as FST

$$E = \langle Q, \Sigma_{\mathcal{G}} \cup \{ | \}, \Sigma_{\mathcal{P}} \cup \{ _ \}, q_0, q_0, \delta \rangle$$

- Add a path $(q_0, q_0, g \cdot |, p \cdot _)$ for each mapping $(g, p) \in M$
- '|' and '_' are reserved delimiter symbols
- Generate all admissible segmentations of a word and its transcription
 - FST $I_{
 m G}$ with a path $(q_0, q_0, g, g \cdot |)$ for every g in the domain of M
 - FST $I_{\rm P}$ with a path $(q_0, q_0, p, p \cdot _)$ for every p in the codomain of M

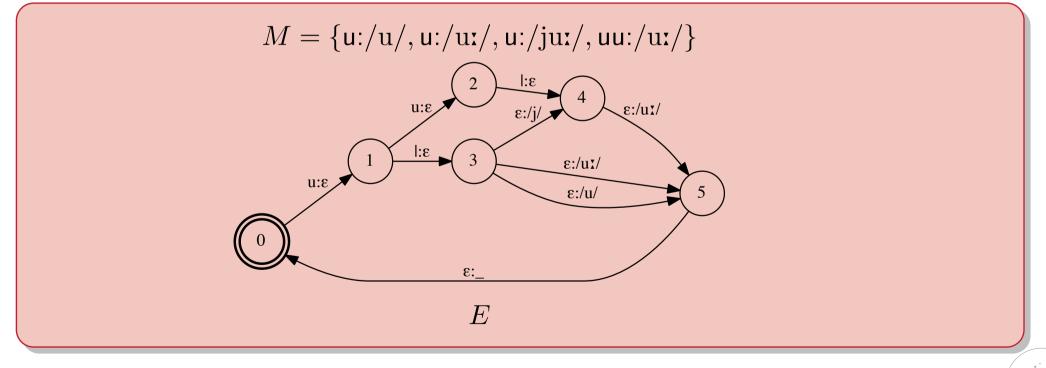
- Construct letter FSTs W and T for a word w and its transcription t
- Alignment of w and t is generated by a series of compositions which filters out all non-matching pairings $A_{W,T} = \pi_2(W \circ I_G) \circ E \circ \pi_2(T \circ I_P)$

Example

 $M = \{\texttt{u}:/\texttt{u}/,\texttt{u}:/\texttt{u}:$

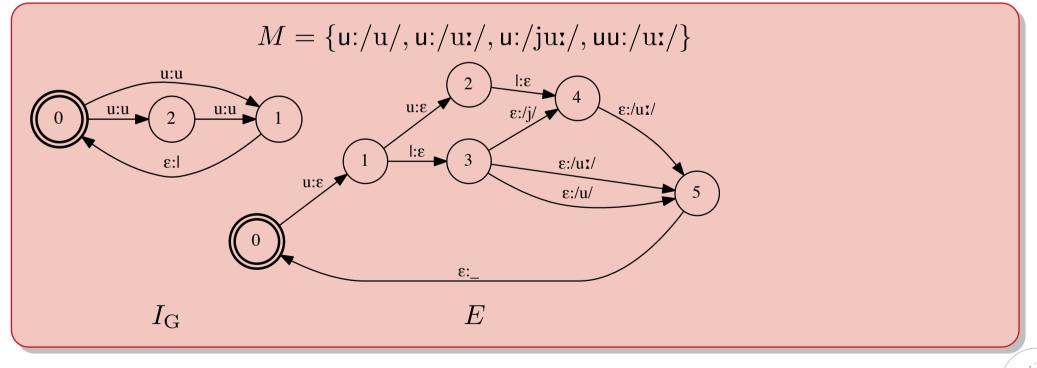
- Construct letter FSTs W and T for a word w and its transcription t
- Alignment of w and t is generated by a series of compositions which filters out all non-matching pairings $A_{W,T} = \pi_2(W \circ I_G) \circ E \circ \pi_2(T \circ I_P)$

Example



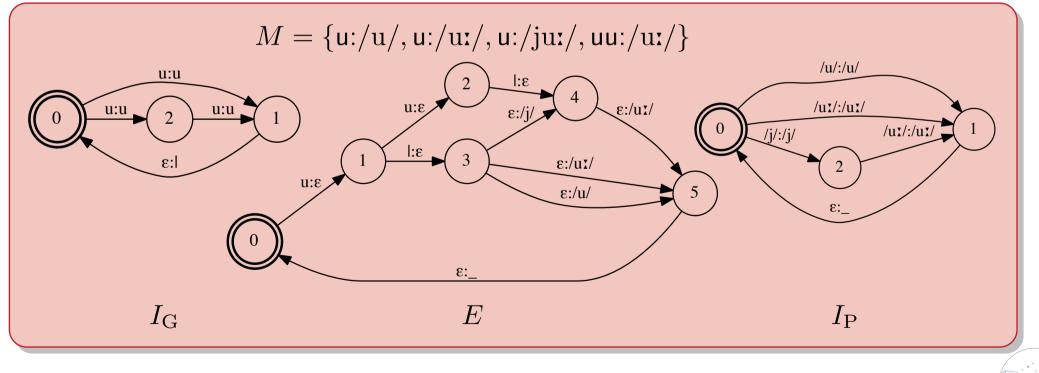
- Construct letter FSTs W and T for a word w and its transcription t
- Alignment of w and t is generated by a series of compositions which filters out all non-matching pairings $A_{W,T} = \pi_2(W \circ I_G) \circ E \circ \pi_2(T \circ I_P)$

Example



- Construct letter FSTs W and T for a word w and its transcription t
- Alignment of w and t is generated by a series of compositions which filters out all non-matching pairings $A_{W,T} = \pi_2(W \circ I_G) \circ E \circ \pi_2(T \circ I_P)$

Example



Extended mappings

- Procedure allows for more complex mappings, i.e. context restriction
- Treatment of multiple alignments:

I	matinee : matiner								
m	а	t	i	ne	е				
\uparrow	\updownarrow	\uparrow	\uparrow	\updownarrow	\updownarrow				
m	a	\mathbf{t}	i	n	er				

 \rightsquigarrow Conflicting rules may be disambiguated using lookahead conditions

Segmentation

 I_G is used to generate possible grapheme level segmentations for subsequent transcription at runtime

Extended mappings

- Procedure allows for more complex mappings, i.e. context restriction
- Treatment of multiple alignments:

I	matinee : matinex								
m	а	t	i	n	ee				
\updownarrow	\updownarrow	\uparrow	\uparrow	\uparrow	\updownarrow				
m	a	\mathbf{t}	i	n	eľ				

 \rightsquigarrow Conflicting rules may be disambiguated using lookahead conditions

Segmentation

 I_G is used to generate possible grapheme level segmentations for subsequent transcription at runtime

Idea

- Given aligned word-transcription pairs, transcription may be considered as sequence labelling problem
- Grapheme sequences are observations, phoneme sequences are labels
- Many existing methods, e.g. Hidden Markov Models, Support Vector Machines, Conditional Random Fields (cf. Erdogan 2010)

CRFs

(Lafferty et al. 2001)

- Graph-based model: labels and observations are represented by nodes
- Labelling is based on a set of random variables expressing characteristics of the observation ~> features
- Training process computes
 - Transition probabilities
 - Influence (weight) of the pre-defined features
- Runtime: Find the most likely state sequence

Features

- Selection of features is a non-trivial task (i.e. no "inference" method)
- Given an input string o = o₁...o_n, gramophone relys only on the (observable) grapheme context
 - Each position i is assigned a feature function f_j^k for each substring of o of length $m = (k j + 1) \le N$ within a context window of N 1 characters relative to position i
 - N is the context size window or "order" of a gramophone model

$$f_j^k(o, i) = o_{i+j} \cdots o_{i+k} \text{ for } -N < j \le k < N$$

Features

- Selection of features is a non-trivial task (i.e. no "inference" method)
- Given an input string o = o₁...o_n, gramophone relys only on the (observable) grapheme context
 - Each position i is assigned a feature function f^k_j for each substring of o of length m = (k − j + 1) ≤ N within a context window of N − 1 characters relative to position i
 - N is the *context size window* or "order" of a gramophone model

$$f_j^k(o, i) = o_{i+j} \cdots o_{i+k} \text{ for } -N < j \le k < N$$

N=2	0_{i-3}	O_{i-2}	O_{i-1}	O_i	o_{i+1}	O_{i+2}	O_{i+3}	
	m	а	t	i	n	е	е	

Features

- Selection of features is a non-trivial task (i.e. no "inference" method)
- Given an input string o = o₁...o_n, gramophone relys only on the (observable) grapheme context
 - Each position i is assigned a feature function f_j^k for each substring of o of length $m = (k j + 1) \le N$ within a context window of N 1 characters relative to position i
 - N is the context size window or "order" of a gramophone model

$$f_j^k(o,i) = o_{i+j} \cdots o_{i+k} \text{ for } -N < j \le k < N$$

N = 3	0_{i-3}	O_{i-2}	O_{i-1}	o_i	O_{i+1}	O_{i+2}	<i>о_{i+3}</i> е
	m	а	t	i	n	е	е

Rating

Idea

- Select the "best" transcription from the segmented and labeled candidates
- Statistical model defined over strings of grapheme-phoneme segment pairs ("graphones")
- *N*-gram model: joint probability as product of conditional probabilities under Markov assumptions $P(gp_0 \dots gp_n) \approx \prod_{i=0}^n P(gp_i | gp_{i-N} \dots gp_{i-1})$

Implementation

- Interpolate all k-gram distributions with $1 \le k \le N$ (Jelinek & Mercer 1980)
- Combined with Kneser-Ney discounting for treatment of out-of-vocabulary items (Kneser & Ney 1995)
- Model parameters are estimated from (aligned) word-transcription pairs
- Implementable within the finite-state calculus

(Pereira & Riley 1997)

Experiments

Corpora & Mappings

- de-LexDB : 71,481 words, 277 graphone types
- de-Wiki : 147,359 words, 589 graphone types (http://de.wiktionary.org)
- **en-CELEX**: 73,736 words, 463 graphone types

Method

- **Compare** gramophone *versus* sequitur
- Test model orders $N \in \{1, 2, 3, 4, 5\}$ using 10-fold cross validation
- Investigate both word and phoneme error rates (WER, PER)

Implementation

- OpenFST for alignment and segmentation
- wapiti for CRF training and application
- OpenGRM for candidate rating

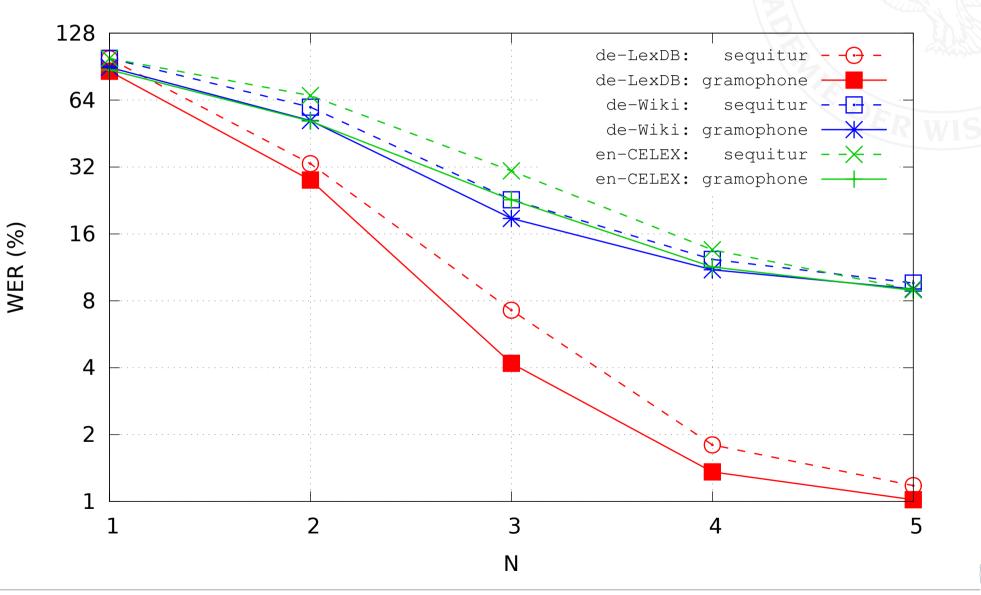
(Gibbon & Lüngen 2000) ttp://de.wiktionary.org) (Baayen et al. 1995)

(Bisani & Ney 2008)

(Allauzen et al. 2007)

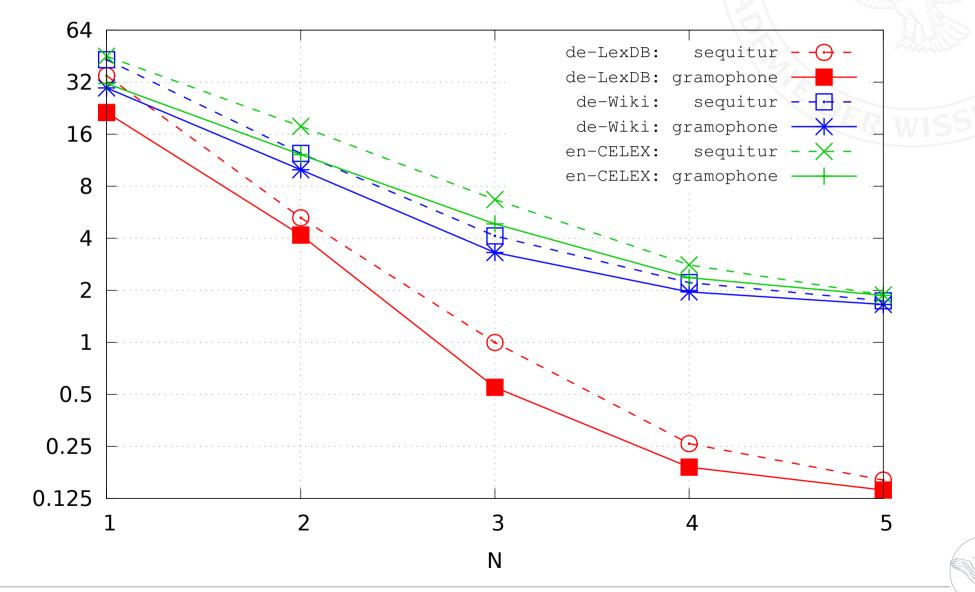
- (Lavergne et al. 2010)
 - (Roark et al. 2012)

Results: Word Error Rate



2015-06-24 / FSMNLP / Universität Düsseldorf

Results: Phoneme Error Rate



berlin-brandenburgische AKADEMIE DER WISSENSCHAFTEN

2015-06-24 / FSMNLP / Universität Düsseldorf

PER (%)

Results: Discussion

General Trends

- gramophone outperformed sequitur for all conditions tested
- performance gain drops as model order increases, negligible for N = 5
- upper bound imposed by mapping heuristics beyond N = 5?
- LexDB performance looks suspiciously good
 - LexDB data were to a large extent automatically generated (Lüngen p.c.)

Interesting Phenomena

- de-Wiki: 25% of the phoneme errors concern schwa deletion
- de-Wiki: glottal stop is not a big issue
- en-CELEX: more uniform distribution of errors, largest class is schwa $\leftrightarrow V$ (22%)

	ən/ņ	əl/ļ	əm/m	?/ ¬ ?
seq	5114	756	307	172
gp	5010	633	299	146

Summary & Outlook

What We Did (instead of summer holidays)

- Novel conversion method based on three simple steps
 - Manually driven alignment/segmentation candidate generation
 - Candidate transcription with CRFs
 - Selection of the most likely candidate using $N\operatorname{-gram}$ LM
- Performance comparable to a state-of-the-art method

Still To Do

- Upper bound on performance imposed by segmentation heuristics
- (Approximate) implementation using (weighted) finite-state methods
 - Transducer (segmentation) \leftrightarrow pair acceptor (LM)
 - Linear chain CRFs $\not\equiv$ (W)FSTs
- Extensions
 - Integrate results of preceding morphological analysis
 - Predict syllabification, stress patterns

(?)

(?)

The End

/ði ϵ nd/

Thank you for listening!

2015-06-24 / FSMNLP / Universität Düsseldorf