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Abstract

Part-of-Speech (PoS) Tagging — the automatic annotation of lexical
categories — is a widely used early stage of linguistic text analysis. One
approach, rule-based morphological anaylsis, employs linguistic knowledge
in the form of hand-coded rules to derive a set of possible analyses for each
input token, but is known to produce highly ambiguous results. Stochastic
tagging techniques such as Hidden Markov Models (HMMs) make use of
both lexical and bigram probabilities estimated from a tagged training
corpus in order to compute the most likely PoS tag sequence for each
input sentence, but provide no allowance for prior linguistic knowledge.
In this report, I describe the dwdst? PoS tagging library, which makes
use of a rule-based morphological component to extend traditional HMM
techniques by the inclusion of lexical class probabilities and theoretically
motivated search space reduction.
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B. Jurish 1. Introduction

1 Introduction

Part-of-speech tagging is used as an early stage of linguistic text analysis in many
applications, including subcategorization acquisition (Manning|,[1993;Ushioda et all,
1993), text-to-speech synthesis (Dutoit, [1997; |Allen et al., [1987), and corpus in-
dexing (Geyken et all,[2002). Two prominent distinct approaches to be found in
previous work are rule-based morphological analysis (Allen et all,[1987; [Hanneforth,
2002b) on the one hand, and stochastic models such as Hidden Markov Models
(HMMs) (Church, 1988; [DeRose, 1988; |ICutting et all, 1992) on the other.

Rule-based morphological analyzers rely on hand-crafted rules to decompose in-
put tokens into their morphological components, computing the resultant lexical
category as a function of those components. Such systems incorporate the lin-
guistic competence of their human authors, to the extent that such competence
can be and is expressed in the systems’ rule sets. Unfortunately, the construc-
tion of a hand-crafted rule set for unrestricted input tokens of a given language
is a time-consuming and labor-intensive task. Another common problem for
token-wise rule-based approaches is that of ambiguity — in order to determine
which of multiple possible analyses for a single token is the correct one, some
reference to the context in which that token occurs is usually required.

Stochastic tagging techniques such as Hidden Markov Models rely on both lex-
ical and bigram probabilities estimated from a tagged training corpus in order
to compute the most likely PoS tag sequence for each sequence of input to-
kens. The existence of hand-tagged training corpora for many languages and
the robustness of the resulting models have made stochastic taggers quite pop-
ular. Disadvantages for HMM taggers include the large amount of training data
required to achieve high levels of accuracy, as well as the fact that no clear
allowance is made in traditional HMM tagging architectures for prior linguistic
knowledge.

Some previous work has focussed on integrating rule-based linguistically mo-
tivated morphological analysis with robust context-dependent disambiguation,
notably work by [Brill (1992,11994) and [Brants (2000). In my opinion, neither of
these approaches represents an optimal integration of prior linguistic knowledge
with robust context-dependent tagging techniques.

Brill’s tagger uses a two-stage architecture, initially tagging input tokens with
their most likely tag (disregarding context), employing an automatically ac-
quired set of lexical rules to identify unknown words by relating them to words
found in the training corpus based on the presence (or absence) of affixes (suf-
fixes or prefixes) of some prespecified maximal length.® In the second stage, a
set of automatically acquired context-dependent transformations are applied to
alter initial tag assignments based on contextual features. While human editing
of the lexical rule set could arguably provide a place for prior linguistic knowl-
edge, the hard limit on affix lengths imposed by Brill’s design makes his system

3For [Brill (1994), the maximum allowed affix length is 4.
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impractical for languages such as German which exhibit highly productive noun
compounding phenomena.

Brants’ stochastic HMM tagger TnT uses a suffix analysis technique attributed
tolSamuelsson (1993) to estimate lexical probabilities for unknown tokens based
on properties of words in the training corpus which share the same suffixes. As
in Brill’s approach, the length of suffixes considered is constrained by a hard
limit,* and the string suffixes considered need not correspond to any linguisti-
cally meaningful units.

The approach taken in the dwdst PoS tagging library developed at the Berlin-
Brandenburgische Akademie der Wissenschaften attempts to integrate a body
of prior linguistic knowledge realized as a finite-state morphological analyzer
(Hanneforth, 2002b) with robust Hidden Markov Model tagging techniques by
modifications both to the underlying model parameters and to the Viterbi al-
gorithm (Viterbi, [1967), which is used by HMM taggers to compute the most
likely tag sequence for a sequence of input tokens.

2 Formal Background

In this Section, I present some formal prerequisites for an adequate formal de-
scription of the dwdst system.

2.1 Text Data

Definition 2.1 (Input Alphabet ¥)
. is a finite set of characters, the input alphabet, and ¥* is the set of all strings
over X, including the empty word, .

Definition 2.2 (Separators)
@ € ¥ is a conventional token separator. ® € 3 is a conventional sentence
separator.

Informally, separators can be seen as conventions which allow the system to
identify and access linguistically meaningful boundaries in an input text.

Definition 2.3 (Token Alphabet X7)

Yr =% —{®,o} is a finite set of characters, the token alphabet. Separators
are explicitly excluded from the token alphabet to ensure that they are used
solely as delimiters.

Definition 2.4 (Tokens Toks)
Toks is a set of delimited token strings: Toks C E5{D}.

41t should be noted that Brants’ system allows the user to specify his or her own suffix-
length limit. By default, the maximum suffix length considered by TnT is 10 characters.
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Definition 2.5 (Sentences Sents)
Sents is a set of delimited sentences: Sents C Toks*{®}.

Without loss of generality, I will write s = wy,...,w, € Sents, or simply
s = wi., € Sents as shorthand for the delimited sentence notation s = wy ®
c-wp, ® O € Sents, for token-strings wy,...,w, € ¥7.. When delimiters are
critical, T will use the notation s = (w1, ..., w,).

Definition 2.6 (Analysis Alphabet)
Y. 4 is a finite analysis alphabet. In practice, it is useful to define an interface
level in which ¥ 4 = ¥, but this is not strictly necessary.

Definition 2.7 (Tag Alphabet)
Tags C X% is a set of part-of-speech tags. I follow tradition in requiring that
that the tagset T'ags be finite.

2.2 Finite State Devices

This Section lays out some basic definitions concerning finite state devices. For
more complete discussions, see|Aho and Ullman (1972) and [Roche and Schabes
(1997).

2.2.1 Finite State Automata

Definition 2.8 (Finite State Automaton (FSA))
A finite state automaton is a five-tuple A = (X, Q, qo, d, F') where:

e Y is a finite alphabet;

e () is a finite set of automaton states;

® gy € Q is the distinguished initial state;

e §:Q x (XU{e}) — 29 is a transition function; and

e ' C (Q is a set of final states.

I will write FSAs to refer to the collection of all finite state automata over the
alphabet .

Definition 2.9 (Extended Transition Function §*)

Given a finite state automaton A = (3,Q, qo,0, F), the extended transition
function §* : Q x ©* — 29 is defined as follows for all ¢ € Q, for all w € X*,
and for all a € ¥ U {e}:

6*(g,e) = {q}
6" (q,wa) = U g a)

q'€6*(q,w)
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Definition 2.10 (Automaton Language)
The language recognized by a finite state automaton A = (%,Q,qo,0, F) is
written £(A), and defined:

L(A)={weX|d(w)NF #0}

A string language L is said to be a regular language just in case there is a finite
state automaton A such that L = L£(A).

Definition 2.11 (Automaton Constructor Rec)

From a finite alphabet ¥ and a string w € ¥*, an automaton Rec(w) € FSAs,
can be constructed such that L(Rec(w)) = {w}. The existence of such an
automaton follows directly from the closure of regular languages with respect to
concatenation. The construction itself is quite simple to define for w = ay - - - an,,
where a; € X for 1 < i < n:

Ree(w) = (S J{i1,0. U {(iras, i + 1))}, {n))
=0

=0

2.2.2 Finite State Transducers

Definition 2.12 (Finite State Transducer (FST))
A finite state transducer is a six-tuple T' = (X1, X2, @, qo, 6, F') where:

e Y, is a finite input alphabet;

e Y, is a finite output alphabet;

Q is a finite set of states;

qo € @ is the distinguished initial state;

§:Q x (B U{e}) — 2@x(Z2U{eh) s a transition function; and

o ' C (Q is a set of final states.

I will write STy, 5, to refer to the collection of all finite state transducers
(21,292, Q, 0,6, F) with input and output alphabets ¥; and X, respectively.

Definition 2.13 (Underlying Automaton)

The underlying automaton for a finite state transducer T' = (31, X2, @, qo, 0, F')
is a finite state automaton A(T) = (X1 x 32, @, qo, 8’, F') where for all ¢1, g2 € Q,
for all a1 € X1 and all as € Xa:

(g1, (a1, 02)) = {q2 | (g2, a2) € 6(q1, 1)}
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Definition 2.14 (Transducer Relation)

The relation realized by a finite state transducer T = (31,32, @, 0,0, F) is
written R(T'), and defined as a binary relation over ¥; and Xs by reference to
the underlying automaton A(T) as: R(T) = L(A(T)).

Similarly, 7" may be seen to induce a mapping |T| : ¥ — 2%2 from input strings
to sets of output strings by defining for all wy € ¥7:

IT|(w1) = {wz € X5 | (w1, w) € R(T)}

Definition 2.15 (Identity Transducer)
A finite state transducer T' € FST s x is called an identity transducer for the
finite state automaton A € FSAy just in case R(T) = {(w,w) | w € L(A)}.
Given the automaton A = (3, Q, qo, 6, F'), an identity transducer Id(A) may be
constructed by setting Id(A4) = (3, %, @, qo,0’, F), where for all ¢g; € Q and for
all a € YU {e},

5/(Q1’a) = U {(QQ,G)}

q2€4(q1,a)

Definition 2.16 (Transducer Projections)
For a finite state transducer T' = (X1, 32, @, qo, 9, F'), Proj1(T) and Projs(T)
are finite state automata, the first and second projections of T, respectively,

defined as: _
PTOJI(T) = (217Q7QOa617F)
PrOjQ(T) = (EQ,Q,QO,(SQ,F)
where for all ¢ € Q, for all a1 € (X7 U{e}), and for all ay € (X2 U {e}):
01(g;a1) = {q'|3as € (82 U{e}).(a7,a5) € 6(q,a1)}
O2(q,a2) = {¢'|3a) € (81 U{e}).(¢/,a2) € 6(q,a1)}

2.3 Hidden Markov Models

This Section lays out some basic definitions concerning discrete Hidden-Markov
Models. For more complete discussions, seeManning and Schiitzd (1999),|Charniak
(1993), or Rabiner (1989). Stochastic part-of-speech taggers can be described
briefly as those taggers which compute the tagging function 7 : Toks"™ — Tags”™
for finite n € N as:

T(wy.n) = argtl__:rel(%)égs" P(t1.n|wi.n) (1)
where:
P(win,t1n) = HP(ti|’w1..i—1,tl..i—l)P(wi|w1..i—1,tl..i) (2)

=1

Definition 2.17 (Hidden Markov Model)
A Hidden Markov Model (HMM) is a five-tuple H = (2, Q, qo, A, B) where:
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Y. is a finite observation alphabet;

Q is a finite set of states;

qo € @ is the distinguished initial state;

A Q xQ — [0.1] is a probability distribution on state transitions:
A(q1,g2) is the probability of a transition to state go from state ¢1; and

e B:QxX — [0..1] is a probability distribution on state symbol emissions:
B(q, a) is the probability of observing the symbol a when in state q.

For a tagset Tags and a finite set of input tokens Toks, it is customary to
define a bigram HMM part-of-speech tagger H = (T'oks, Tags, ®, A, B), where
the probability functions A and B are estimated from a tagged training corpus.
Under such a model, part-of-speech tags are represented as states of the model,
and the task of finding the most likely tag sequence t;., € Tags™ for an input
token sequence wy_,, € Toks™ can be formulated as a search for the most likely
sequence of HMM states given the observation sequence w; .. Underlying such
a technique are the following two Markov assumptions:

P(tilwy. i—1,t1.i-1) = P(tilti—1) (3)
P(wi|wy.i—1,t1.5) = Plw;|ti ;) (4)

Under these assumptions, and with the addition of a special boundary tag ¢y,
computation of the most probable tag sequence 7(w;. ) for an input sequence
w1, can be simplified® to:

n

T(wy.n) =arg max HP(wi|ti)P(ti|ti_1) (5)

t1.n€Tags™
=1

Definition 2.18 (Viterbi Algorithm)

The Viterbi Algorithm (Viterbi, [1967) is a dynamic programming method which
efficiently computes for an HMM H = (X, Q, qo, A, B) and a given observation
sequence o1, € X" the state sequence q1., € Q™ most likely to generate o1,
according to the model parameters.

Formally, the Viterbi algorithm computes: argmax P(01..,,q1.») by incremen-
qdi..n

tally computing variables d4(¢), which store for each time increment ¢ and each
state ¢ the probability of the most likely path resulting in state ¢ at time 4, as
well as variables 1,(7), which store for each time increment i and state ¢ the
most likely path leading to ¢ at time 4, which is completely specified by the
most likely predecessor for ¢ at time i:

5Here and elsewhere, I assume an “initial tag” tg, use of which will be made explicit in
Section
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dg(i) = Jnax P(o1.i-1,01..i-1: ¢ = q)
1..i—1
Yy(i) = arg, , max P(o1 i-1,q1.i-1,¢ = q)

q1..i—1

The computation proceeds as follows:

1. Initialize:

1 ifg=
5(1(0) = { =

0 otherwise

2. Repeat: for 1 <i<n

dq(1) = {Ivggéq/(i - 1)A(¢,q)B(g,0:)
Ye(i) = arg glgg%' (i — 1)A(d',q)B(gq,0:)
3. Terminate:
n = )
q arg max 7(n)
Gi—1 = Pg (i), form>i>1

3 The dwdst System

The dwdst part-of-speech tagger is composed of five runtime main modules:
the preprocessor, the morphological analyzer, the lexical classifier, the HMM
disambiguator, and the analysis restrictor. An additional module — the HMM
trainer — is used to estimate model parameters from a tagged training corpus.
A simplified graphical representation of the functional relations between these
modules is given in Figure [l In the remainder of this Section, I present some
details on each of these modules in turn.

3.1 Preprocessor

The preprocessor reads and tokenizes a raw input text, performing basic end-
of-sentence recognition and abbreviation expansion, using a set of hard-coded
language-specific heuristics. For purposes of portability, the preprocessor is
currently implemented as an independent process, dwdspp, whose formatted
output may be piped to the tagger proper. Formally, the task of the preprocessor
may be described as follows:

Definition 3.1 (Preprocessor PreProc)
The preprocessor is a function PreProc : ¥* — Sents which maps raw input
strings to delimited sentences — strings of delimited tokens.

The preprocessor dwdspp is implemented in C++ as a flex++ (Coétmeur, [1993)
lexical analyzer using an 8-bit input alphabet.® The newline character (char-

6By default, the ISO-8859-1 character set is used.
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Input Text

[ Preprocessor }

Token Stream

|
Training Corpus Morphological Analyzer Morphology FST
Ambiguous Analyses Y

[ HMM Trainer ]4—[ Lexical Classifier }
Ambiguity Classes Y
Model Parameters

Tag Extraction FST

HMM Disambiguator }

PoS Tag Sequences Y

[ Analysis Restrictor J

¢

Final Analyses

Figure 1: Simple functional diagram of the dwdst tagger

10



1T

Input:

Morphological
Analysis:

Tag Extraction:

Disambiguation:

Analysis
Restriction:

{

{

Linda
Linda

NE. first,

NE.last

{NE}

NE

NE. first,

NE.last

Nakew wird die Mannschaft

Nakew

} 0

ART,

XY

NE

} (e

will the team
ART.sg.nom.fem,
NN.masc.sg.nom,

VVFIN.37d.sg.pres, PDS.nom.sg.fem,

VAFIN.37d.sg.pres,
VVIMP.sg

NN. fem.sg.*

PRELS.acc.pl

VVFIN, ART,
VVIMP, PDS, {nN}
VAFIN PRELS

VAFIN ART NN

ART.5g.nom. fem, NN.masc.sg.nom,

} ART.sg.acc.fem,
ART.pl.nom.x,
ART.pl.acc.*

{ VAFIN.3rd.sg.pres

NN. fem.sg.*

Figure 2: Example of runtime dwdst module output
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acter code 0x16) is used as a token delimiter, and two sequential newline char-
acters (a blank line) indicate a sentence boundary, which effectively eliminates
the empty token e from the set of allowable tokens Toks.

All implemented heuristics for the tokenization of German are hard-coded into
the preprocessor in the form of POSIX regular expressions. While such an imple-
mentational strategy is itself far from portable, the fact that the preprocessor
runs independently of the rest of the tagging system, together with the existence
of a well-defined Application Program Interface (APT) for tokenized text makes
up somewhat for the lack of a truly portable preprocessor.

3.2 Morphological Analyzer

The morphological analyzer segments and analyzes incoming tokens according
to a set of decomposition rules represented as a finite-state transducer. The
decomposition rules encoded in the morphological transducer are assumed to
implement a body of prior linguistic knowledge regarding the behavior of the
target language with respect to phenomena such as affixation, inflection, ortho-
graphic stem transformations, and compounding. For maximum portability and
language independence, the morphological transducer must be specified by the
user at runtime.

A complete discussion of the use of finite-state transducers for morphologi-
cal analysis is beyond the scope of this document, but see |Aho and Ullman
(1972) and [Roche and Schabes (1997) for background on finite-state devices,
see [Koskenniemi (1983) and [Karttunnen et all (1987) for details on the use of
finite-state technology for morphological analysis, and see [Hanneforth (2002b)
for a discussion of the finite-state morphological analysis transducer for Ger-
man used by the dwdst tagger at the Berlin-Brandenburgische Akademie der
Wissenschaften.

Definition 3.2 (Morphological Transducer Thorph)

Triorph € FST s, 5, is a finite state transducer with input alphabet Y7 and
with output alphabet ¥ 4 which relates token strings w € X7, to analyses A C 3%
by the regular function |Tasorpn| @ 25 — 274,

In practice, the underlying finite-state device library (Hanneforth, 2002a) com-
putes and returns the set of analyses |Throrpn|(w) for a given token w € 3% as a
finite-state automaton M,, € FSAs, which recognizes the range of valid anal-
yses. M, is computed by converting the string w to an identity-transducer,
composing it with Thsorpn, and projecting the output tape of the resulting
analysis transducer. The language recognized by the analysis automaton M,
is the set of valid analyses for w according to the morphological transducer:

L(Mw) = ITMoT'ph ‘ (w)

Crucial for the approach taken by the dwdst library is that for any token string
w € Xk, the set of analyses |Throrpn|(w) is finite. Stated in terms of analysis

12
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automata, this is equivalent” to requiring that any analysis automaton M,
returned by the morphological component is acyclic.

Definition 3.3 (Morphological Tagger Component)
The morphological tagger component Morph : X7, — FSAy, , itself is defined
for token strings w € X% as:®

Morph(w) = M,, = Proja(Id(Rec(w)) o Trhiorpn)

As stated above, it is required that all M, returned by the morphological com-
ponent contain no complete cyclic paths.

The morphological component of the implemented dwdst tagging system may
be called on its own as the executable program dwdsm for development and
testing purposes, or it may be implicitly used by the high-level tagging program
dwdst itself. In both cases, the user must specifiy a finite state transducer and
alphabet specification to be used for analysis.

3.3 Lexical Classifier

The analyses returned by the morphological component may contain much
more information than is required for part-of-speech tagging, including informa-
tion about an input token’s canonical form (lemma), segmentation boundaries,
and/or morphosyntactic features such as case and number. Incorporating such
features into the notion of a “part-of-speech tag” is undesirable for two reasons:
first, it increases the size of the tagset, which makes the task of a part-of-speech
tagger harder to accomplish and consequently reduces tagger accuracy. Second,
currently available training corpora rarely provide the full range of information
output by a highly informative morphological component, which all but elim-
inates the utility of such corpora for later estimation of HMM transition and
emission probabilities.

The usual approach to such interface incompatibilities involves one or more con-
version stages during the development phase. In this approach, incompatible
morphological and corpus conventions are forced into a single set of application-
specific conventions, either by explicit editing performed by human developers
or by automatic means. Such conversion strategies have the desired effect of
eliminating incompatibilities, but are highly dependent on the (host) applica-
tion, and generally do not adapt well to changes on either side of the interface
in question.

In the case of the German tagging system developed at the Berlin-Brandenburg-
ische Akademie der Wissenschaften, the feature sets and conventions used by the

1 assume that M, contains no useless transitions: that all transitions in M,, occur as part
of some valid path from the initial state to a final state. Such a condition is easy to enforce.
8Here, o indicates transducer composition, |71 o T2 |(w) = |T2|(|T1|(w)).

13
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training corpus differed from those used by the morphological component. Also,
the morphlogical transducer provides information regarding canonical form(s)
and segmentation boundaries for each recognized token, in addition to part(s) of
speech. One potential host application, a document indexing system, is capable
of handling the degree of ambiguity induced by the presence of non-category fea-
tures, but would benefit from the ambiguity reduction provided by the selection
of a univocal “best” part of speech tag, while other applications require only the
part of speech tag itself. It is difficult to see how a development-phase forced
conversion strategy could accomodate the needs of diverse host applications in
a sufficiently flexible manner.

The lexical classifier tagger component was introduced into the runtime dwdst
part-of-speech tagging system to provide a well-defined abstract interface to
varying conventions of a highly informative morphological component, and to
allow sufficient flexibility in the interpretation of what exactly constitutes a part-
of-speech tag and what does not — for instance, whether to exclude syntactic
features from the notion of a “tag”, while still retaining information regarding
which tags of an ambiguous analysis are associated with which features.

The task of the lexical classifier is twofold: first, to identify ambiguity classes
(sets of part-of-speech tags) from the analysis automata output by the morpho-
logical component, and second, to maintain information on the sets of full anal-
yses associated with each of the extracted tags. Both tasks are efficiently and
flexibly accomplished by means of a user-specifiable tag-extraction transducer
Tragx € FSTs, s, which relates analysis-strings a € X% to tags t € Tags,
formally:

Definition 3.4 (Tag Extraction Transducer Trq4x)

Tragx € FST s, 5., Is a finite state transducer with input and output alphabet
Y4 which relates analysis strings a € X% to tags ¢ € Tags by the regular
function |[Tregx|: X% — oTags,

Similar to the case of the morphological component, the underlying finite state
device library returns the set of extracted tags for an analysis automaton M,, €
FSAS,, on the output tape of a finite state transducer X, = Id(My) o Tragx -
The set of extracted tags itself is then given by ¢, = L(Proj2(Xy)).

An additional task of the lexical classifier is the implementation of default rules
for handling tokens unknown to the morphology. Such tokens w are referred to
as “unrecognized”, and are identifiable by checking whether £(M orph(w)) = (),
which is efficient to compute. If such a token is found, then M,,, X, and ¢,
are computed as above for the special token® u which allows the user to encode
the default analyses for unrecognized tokens directly into the morphological
component. As a final fallback solution, the system considers all tags as empir-
ically determined from a training corpus as possible analyses for w, behaving

9In the implemented dwdst system, the “unknown” token u is represented by the string
QUNKNOWN.

14
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Xar, =1Id( |J Rec(t)).°

teTags
For the simplest case where the morphological component outputs only part-of-
speech tags, the user may choose not to specify Tr,4x, in which case the system
behaves as if Trqqx were an identity transducer for %, so that X, = Id(M,,)
and Cyy, = L(M,y,).
Definition 3.5 (Lexical Classification Tagger Component)
The lexical classification tagger component Lex : 3% — 27995 jtself is defined
for a morphological component Morph as described above, an input token string
w € X7, and a designated “unknown” token u € X7 as:

Morph(w) if L(Morph(w)) #0

Morph(u) if L(Morph(w)) =0
Morph/(w) = M), = and L(Morph(u)) # 0

U Rec(t) otherwise
teTags

TagX(w) =X, = Id(Morph'(w))o Tregx
Lex(w) =cy= L(Proj2(TagX(w)))

As for the morphological component, it is required that all M, and X,, returned
by the lexical classification component contain no complete cyclic paths.

3.4 HMM Trainer

The HMM trainer module estimates model paramaters from a tagged training
corpus for later use by the disambiguator module (Section B35 — formally, the
task of the HMM trainer is the construction of an HMM (Xp, Qp, o0, Ap, Bp)
as described in Section 231

Definition 3.6 (Training Corpus)

A training corpus C' C ((£7xTags)U{®})* is a finite sequence of delimited pairs
Oo(wiyty) - (Wp, ) O1 Oy (W) -+ (W] 87 ) O where 85 € Tags
is the tag associated with the token string w; € ¥% at index j of the it" sentence

in the corpus, for 1 <i < m and for 1 < j <mn,.

Given a training corpus as above, the first step in the construction of a disam-
biguation HMM Dis = (Xp,Qp,q%, Ap, Bp) is the empirical determination

10Disjunction of finite state automata is meant here by |J, which is equivalent to union of
their languages.
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of the HMM tagset!'! Tagsp, and the set of known tokens Toksp, where u is
a distinguished placeholder for unknown runtime input tokens, and ® is the
distinguished sentential boundary tag:

Toksp = U U{w;} U {u} (6)
Tags, = |JUteru{e) ”)
i=1j=1

Similarly, a set Classesp of all ambiguity classes occurring in the training corpus
can be extracted by consulting the lexical classification module:

m Nn;

Classesp = UU{Leaj(w;)} (8)

i=1j=1

Of course it is the case that given a finite tagset Tags, the set of all possible
ambiguity classes 27%9% is also finite. Exponential growth of both time and
memory requirements would be the result of any direct use of such a definition,
however, and was therefore deemed infeasible for actual implementation. In
the case of the German morphlogical component using a 64-tag tagset, it was
found that out of over 1.8 x 10! possible ambiguity classes, only 467 were
actually ever assigned to an input token in a training corpus of about 300,000
running words. Similarly, for a 712-tag tagset including morphological features,
only 3153 distinct classes out of a total of 2.15 x 10%!* theoretically possible
were actually assigned. Due to these results, the dwdst system uses an internal
enumeration of actually occurring ambiguity classes Classesp, rather than the
theoretically pure but computationally expensive powerset 2795

Definition 3.7 (Corpus Frequency)
Given a training corpus C' as above, for a token-string w € ¥7%. and tags ¢,t;,t2 €
Tags, the following frequency functions are defined:

e the tag-unigram frequency function Fqg :Tagsp — N;

m Ny
Fg,(t) = Card(|J [J1G.J) | £ = 1}) (9)
i=1j=1
e the tag-bigram frequency function Fbcg :Tagsp x Tagsp — N;

m n+1

F(tr,t2) = Card(| J (J{(.5) | 5y =t1 &t =12} (10)

i=1 j=1

11 The HMM tagset Tagsp can be understood as the empirically determined pendant of
the formal tagset T'ags as described in Section [ZIl The need to construct such a relation
forces me to adopt an interface level for which ¥4 = X7 U{®} — this interface level is largely
omitted here for purposes of clarity.
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e the joint word-tag frequency function ng :Toksp x Tagsp — N;

m n;

FS (w,t) = C’ard(U U{(Z,j) | wé =w& t; =t}) (11)

i=1j=1

e and the joint class-tag frequency function FCC[ : Classesp x Tagsp — N

m  n;

FY(c,t) = Card(U U{(Z,j) | Lex(w§) =c& t; =t}) (12)

i=1j=1

Note that under- and overflow of indices for tag bigram frequencies are handled
by setting to =t;,.,; = © for 1 <i <m.

3.4.1 Maximum Likelihood Estimates

Maximum likelihood estimates are computed for tag uni- and bigram probabili-
ties, as well as for conditional token- and class-probabilities for w € Toksp—{u},
¢ € Classesp, and t,t1,ta € Tagsp. For the purposes of the following defini-
tions, zero divided by zero is considered to be zero.

Puy(t) = Pyt (13)

FS(t1,t2)

Dyg(taltr) = FC () (14)
C (w

Puatul) = ) (15)
N Cle

Paclt) = W (16)

3.4.2 Smoothing

The maximum likelihood estimates are augmented by uni- and bigram smooth-
ing constants A\; and Ao, respectively, as well as by discriminating selector func-
tions k1 and ks, and a small quantity £, which is used to prevent propagation
of zero probabilities.

The n-gram smoothing constants A1, Ay € [0..1] must be such that A\;+X2+£€ = 1,
and are used to define the adjusted bigram probability function P, for the
disambiguation HMM, for all ¢1,%5 € Tagsp:

Py (talt1) = A Pug(ta) + Ao Pyg(talt:) + € (17)
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The dwdst trainer estimates values for \; and Ay by the deleted interpolation
algorithm described in [Brants (2000), but also allows the user to override these
estimated values.

The discriminating lexical selector functions k; : Toksp — {0,1} and ko :
Toksp — {0,1} are used to exclusively select between tag-conditioned token
and class MLE estimates for a token string w € Toksp:

0 fw=u
i (w) _{ 1 otherwise (18)

The selector function ko is simply the logical negation of k1:

{ 1 fw=u

0 otherwise (19)

Ko(w) =

The selector functions x; and ko are used for the definition of an adjusted
lexical probability function P, for the disambiguation HMM, for all w € Toksp,
c € Classesp, and t € Tagsp:

P ((w,0)[t) = (1 = &) (k1 (w) Pyg(w|t) + ko (w)Pa(clt)) + € (20)

Of course, given a constant morphological component and tag extractor, the
ambiguity class associated with an input token string w is completely deter-
mined by the string w, so that the vast majority of token-class pairs (w, ¢) will
never be needed. Indeed, the implemented dwdst trainer stores only either raw
frequencies (text format) or MLE estimates with smoothing parameters (binary
format) in the model parameter files it generates, in order to avoid memory
bloating. The implemented system can thus be said to use an entirely different
notion of what exactly constitutes a Hidden Markov Model — the definitions
here are meant to formally describe the behavior of the implemented system in
terms of a more traditional HMM definition.

3.4.3 Disambiguator Parameters

Finally, the parameters of the disambiguator HMM Hp = (Xp, Qp, g0, Ap, Bp)
can be defined for w € Toksp, ¢ € Classesp, t,t1,t2 € Tagsp:

YXp = Toksp x Classesp (21)

Qp = Tagsp (22)

@ = O (23)
Ap(ti,ta) = Pyg(talt) (24)
Bp(t,(w,c)) = Pa((w,c)[t) (25)

In the implemented dwdst system, known token strings w € Toksp, as well
as tags t € Tagsp and ambiguity classes ¢ € Classesp are represented by

18
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natural number identifiers, for efficient storage and retrieval. Also, as mentioned
above, the observation probability table Bp is split into subcomponents for
token strings Bp,,, and lexical classes Bp,,,,., for data reduction purposes.
Undefined entries in these tables are treated as zero probabilities.

3.5 HMM Disambiguator

The HMM disambiguator module is based on a modified version of the Viterbi
algorithm (Definition [ZI8]), tailored for the availability of ambiguity class in-
formation for each observed token. Specifically, the modified Viterbi algorithm
computes the disambiguation function 7p : (T'oksp x Classesp)™ — Tags} for
finite n € IN:

n

mp(wi. ) =arg max HP((wi,Lem(wi))|ti)P(ti|ti,1) (26)

t1. n€Tags? i

Definition 3.8 (Modified Viterbi Algorithm)

The modified version of the Viterbi algorithm used by the dwdst system makes
use of the ambiguity classes encoded as components of the observation alphabet
¥.p in order to reduce the search space and execution time.

1. Input: toky , € Sents
2. Observations: for 1 <1 <n:

(a) Filter unknown tokens from the input sentence by setting:
{ tok; if tok; € Toksp
w; ‘= .
u otherwise

(b) Classify token-strings by consulting the lexical classification module,
setting:
¢; := Lex(w;)
3. State Variables:
Time-dependent variables ;(7) and () are defined as for the traditional

Viterbi algorithm.

4. Initialization:

5,(0) = {1 ift=0

0 otherwise

5. Repeat: for 1 <i<n

Bii) = maxdu(i — DA DB (wi, )
Gli) = argmaxdu(i — DA DB (wi,c)
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6. Terminate:
t, = arg max ot (n)A(t,®)
P, (i), forn >i>1

ti—1

7. Output: Tag sequence t1_,, € Tagsy,.

This modified Viterbi algorithm uses part-of-speech ambiguity classes as lexical
equivalence classes for purposes of n-gram based stochastic sequence optimiza-
tion, a technique implemented by [DeRosd (1988), who noted that lexical equiv-
alence classes can also be used as a means of data reduction, since experience
shows there to be fewer actually ocurring part-of-speech ambiguity classes than
there are literal text tokens. Use of literal tokens as input symbols provides
more accurate results, however — the dwdst system allows users to specify a
minimum absolute frequency which a literal token must exceed in the training
corpus before becoming eligible to act as a “known” token, thus being passed
unchanged through step (2a)) above.

An additional novelty of the modifified algorithm is the restriction of the algo-
rithm’s search space based on the constitution of the lexical ambiguity classes
— only those tags are considered possible analyses at a given input index 1
which appear as elements of the ambiguity class ¢; associated with that in-
dex. In this way, the body of prior linguistic knowledge assumed to be encoded
in the morphology transducer is exploited by the HMM disambiguation mod-
ule. A traditional and formally equivalent implementation of this technique
is setting those output probabilities B(t, (w,c)) to zero whenever ¢ & c. De-
spite its formal correctness, the traditional description — if implemented as such

Card(Tags)? )

— still requires at least O (n execution time, since each tag must

still be considered at each time increment. The modified algorithm requires

Avg(Card(c;))?

on average O (n ) execution time — proportional to the average

size of a lexical ambiguity class ¢;. For the German morphological compo-
nent, Avg(Card(c;)) =~ 2.2 for Card(Tags) = 64, and Avg(Card(c;)) ~ 5.2
for Card(Tags) = 712, so the efficiency improvements provided by such search
space reduction are indeed non-trivial.

3.6 Analysis Restrictor

The analysis restrictor is responsible for pruning out those analyses returned
by the morphological transducer which do not correspond to the most likely
part-of-speech tag as determined by the HMM disambiguator. This task is
efficiently accomplished for each input token-string w by reference to the tag-
extracted analysis transducer TagX (w) returned by the lexical classification
module,'? which directly encodes the relation between part-of-speech tags and

128ee Definition for the definition of the tag-extracted analysis transducer T'agX (w).
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4. Results

Training Size: 355096 tok

Corpus Test Size: 35332 tok

Tagset Size: 55 tags
Recognition: 97.21 %
Morphology Coverage: 95.13 %

Tagset Size: 64 tags
] . ] Saves: 61.13 %
Disambiguation Success:  97.67 %
Accuracy: 95.19 %

Global |y ughput: 25047 tok/sec

Table 1: Results for the implemented dwdst tagger

full analyses, and is temporarily stored by the dwdst system as a component of
the internal sentence buffer.

Definition 3.9 (Analysis Restriction Tagger Component)

The analysis restriction tagger component Restrict : X7 x Tags — 2%4 s
defined for a an input token string w € ¥7 and a univocal part-of-speech tag
t € Tags as:

Restrict(w,t) = L (Proji1(TagX (w) o Id(Rec(t))))

Note that in the trivial case of a one-to-one mapping between morphological
analyses and part-of-speech tags, Restrict(w,t) = {t}, by Definition For
efficiency reasons, the dwdst system treats the case of a one-to-one mapping as
a special case in which the user specifies no tag-extraction transducer Trrqqx.
In this case, no tag-extracted transducer T'agX (w) is actually constructed, in
order to avoid unecessary calls to the underlying finite state device library.

4 Results

The system described in Section [B] was implemented in C++ and tested for
German with the finite-state morphological component described in [Hanneforth
(2002b), using the NEGRA corpus (Skut et all, [1997) for training and evalua-
tion. 90% of the NEGRA corpus was used for training, and the remaining 10%
was reserved for evaluation and testing. All tests were performed on a machine
with an Athlon XP 2000+ (1.66GHz) CPU running Linux. A summary of the
results is given in Table [l

Some explanation of the data presented in Table[dlis in order. The morphological
recognition rate is defined as the number of input tokens for which the morpho-

12Reported throughput includes disk 1/0.
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logical component returned a non-empty analysis divided by the total number
of input tokens. The morphological coverage rate is defined as the number of
input tokens for which the correct tag (according to the evaulation/test corpus)
was included in the set of analyses returned by the morphological component.

The disambiguation save rate is defined as the number of unrecognized tokens
which were assigned the correct tag by the disambiguation module divided by
the number of unrecognized tokens. The disambiguation success rate is defined
as the number of covered tokens which were assigned the correct tag by the dis-
ambiguation module divided by the number of covered tokens. Global accuracy
refers to the usual concept, defined as the number of correct tag assignments
made by the tagging system divided by the total number of input tokens.

The dwdst tagger described here was also evaluated against a more traditional
bigram HMM tagger using a limited number of lexical classes based on the pres-
ence/absence of punctuation and/or digits in the input tokens.'® Tests showed
that the dwdst tagger achieves higher accuracy rates from smaller training cor-
pora than the traditional HMM approach — for the corpus configuration de-
scribed above, dwdst’s use of lexical equivalence class probabilities in place of
literal token probabilities when the latter are not available resulted in a 17.6%
reduction in errors with respect to the baseline given by the traditional HMM
tagger. These comparative results are plotted for against training-corpus size
in Figure Bl

The interpretation of morphological analyses as a source of prior linguistic
knowledge allows a theoretical speed improvement of circa 96% with respect
to a traditional HMM tagger. In practice however, the dwdst tagger with a
high-coverage morphological component is not significantly faster than a tra-
ditional HMM tagger using heuristic search-space reduction techniques such as
beam search, due in a large part to the additional overhead introduced by the
morphological lookup and classification routines. Additionally, the uncontesta-
bility of non-empty morphological analyses enforces a strict upper bound on
tagger accuracy: the correct tag cannot be assigned by the disambiguator mod-
ule if the ambiguity class for the token in question does not contain that tag
as an element. High morphological coverage is therefore critical for application
of the tagging technique described here. Indeed, it is better for overall tagger
accuracy for the morphological module to return an empty analysis set than for
it to return a non-empty analysis set which does not contain the correct tag.

5 Future Work

Although the initial results for the implemeneted dwdst system are encourag-
ing, many improvements to the system as it stands could still be made. The

13The more traditional HMM tagger used for these tests is also implemented and distributed
as part of the dwdst library as the executable program dwdshmm.

22



B. Jurish 6. Conclusion

100 T
dwdst Tagger —e—
Traditional HMM u
—0 a
-1 - . ] L |
85 * g
g
>
& 80 i
=
8
< L]
ol 75 R
g :
j=2
It
i
70 B
65 - B
60 B
55 Il Il Il Il Il Il
0 50000 100000 150000 200000 250000 300000 350000

Training Corpus Size

Figure 3: Comparison of dwdst vs. a traditional HMM tagger

use of tag trigrams — in addition to uni- and bigrams — to estimate state tran-
sition probabilities for the disambiguator module as described for a traditional
HMM tagger in [Brantd (2000) could well improve overall overall accuracy. Also
worth investigation would be a flexible method by which to incorporate seg-
mentation information returned by the morphological module into the emission
probabilities for the disambiguator, since it has been shown (Charniak et all,
1993; [Samuelsson, [1993) that even a simple string-suffix analysis can improve
accuracy for traditional HMM taggers. Along these lines, a revised morpholog-
ical lookup routine might be implemented to provide a linguistically motivated
suffix analysis even when the corresponding stem(s) are not encoded in the un-
derlying transducer. With such improvements implemented, I speculate that
overall tagger accuracy might reach or even exceed the level of more mature
tagging systems.

6 Conclusion

In this paper, I have presented an approach to part-of-speech tagging based on
the integration of a rule-based morphological analyser encoded as a finite-state
transducer with a Hidden Markov model disambiguator. Inclusion of lexical
equivalence classes as determined by the morphological analyser as sources of
categorical information allowed a theoretically motivated search space reduction
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for the modified Viterbi algorithm used by the disambiguator. Use of lexical
classes as equivalence classes for HMM emission probability estimates was shown
to improve overall tagger accuracy with respect to a more traditional approach,
especially for small training corpora. Initial results for accuracy and through-
put are encouraging, but a number of optimizations might be made to further
improve the system.
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