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2 Information Theory

Information theory grew largely out of work published in the late 1940s by
Claude Shannon, and stems from a theoretical framework in which stochastic
trials represent communication, aka data transmission. Shannon’s work itself
can be understood as motivated to a large degree by his cryptographic work at
Bletchley Park together with Alan Turing during the Second World War; thus
Shannon’s model is expressed in terms of encoding or compression.

2.1 Entropy

e History:

— Terminology from physics (thermodynamics)

— Entropy rises as energy (heat) is added to a system.
e Intuitive Definition:

— Entropy = “chaos”, disorder, unpredictability, ...

— Entropy as a measure of uncertainty with respect to the outcome of
a stochastic trial:

* Low entropy — low uncertainty
* High entropy — high uncertainty

Definition 1 (Entropy) Let X be a random variable with distribution p.
Then, the entropy of X is written H(X), and is defined as the mean negative
binary logarithm of the probability:

H(X) = — Y p(x)log,p()

Tz€EQx
= S p(a)logy ——
€N x p(x)

e Binary logarithm used to measure entropy in bits: unless otherwise spec-
ified, logz = log, x

e By convention, we let 0log0 = 0 and plog % = 0o when computing entropy
(and other related quantities).

e Notational variants: H(X) = H(p) = Hx(p) = H(px)

Example 1 (Entropy: Fair Coin)

p(0) = p(1)=05
H(p) = —(0.510g0.540.5log0.5)=—-2-(0.5--1)=1
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Example 2 (Entropy: Fair Die)

L for1<i<6
- or i
6 <1<
1
6 - (610g6> = log6 =~ 2.58

Example 3 (Entropy: Unfair Coin)

p(l) = 0.2 , p(0) = 0.8
H(p) = —(0.2l0og0.2+ 0.8log0.8) ~ 0.722

Some Properties of Entropy

e Entropy is non-negative: H(X) >0
o If p(z) =1 for some z € Qx, then H(p) =0
e There is no global upper bound on entropy, but:

— Uniform distributions maximize entropy (are most unpredictable)

— In a uniform distribution, all outcomes are equiprobable: p(xz) =
e S0 H(X) <log|Qx|.

2.1.1 Entropy and Encoding

Shannon’s notion of entropy represents the average number of bits required
to encode the outcome of a single stochastic trial properly modelled by the
distribution p in an optimal encoding (read: “maximally compressed”):

e Recall: a binary string with n bits can take 2" possible values — this is
just the number of binary decisions one has to make to determine which
of n equiprobable events has occurred (binary search).

e Idea: using variable-length codes, an optimal encoding scheme will be
one in which common messages (read: “outcomes with high probability”)
are encoded with fewer bits than uncommon messages.*

e Method: Knowledge of the probability distribution p gives us a way to
determine the minimal number of bits required to encode the occurrence
of each outcome z: min(length(code(z))) = —log, p(z); Shannon entropy
is just the mean of this quantity.

IThere’s nothing magical about bits here — we could use logarithms of any arbitrary base b
to express code lengths in a b-adic number system. Use of the binary (base-2) number system
is just a useful convention.
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Example 4 (Entropy: DNA) Suppose we wish to encode a particular DNA
(sub)sequence; then:

e Outcomes:
0={A,CT,G}

e Naive Code codeq:

A:00, C:01,T:10,G: 11

e Mean (naive) Code Length:

E(length(code; (X))) = ;gp(;v) - length(code; (z))
= (0.5-2) + (0.25 - 2) +2(0.125 - 2)
= 2 bits

e Distribution:
p(A) = 0.5, p(C) = 0.25, p(T) = 0.125, p(G) = 0.125
e Minimal Code Lengths = —logp(x):

A :1bit, C:2bits, T:3 bits, G : 3 bits

e Entropy = Weighted Mean (minimal) Code Length:

H(X) = %:Q p(z) - min(length(code(x)))

= > p(x)-—logp(z)

e
(0.5-1) + (0.25 - 2) + (0.125 - 3) + (0.125 - 3)
= 1.75 bits

e Oops! Naive code ain’t so great:
E(length(code; (X))) > H(X)
e Improved Code codes:

A:1, C:01,T:000,G: 001

e Weighted Mean (improved) Code Length:

E(length(codey(X))) = ;ﬂp(:n) - length(codes(z))
= (0.5-1)+(0.25-2) +2(0.125 - 3)
= 1.75 bits

e Yipee! Improved code is optimal.

E(length(codes(X))) = H(X)
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2.1.2 Perplexity

e Idea: Comparison of information content between two random variables
whose sample spaces are of different size — i.e. where we can’t simply
normalize by [Q].

e Method: Formalize notion of “information content” in terms of stochastic
experiments with uniform distributions, where the only relevant variable

e Side Effect: Perplexity values are much larger than (normalized) en-
tropies.

Definition 2 (Perplexity) For a random variable X with distribution p, the
perplexity of X is written G(X) and is defined as:

G(X) := 280

Intuitively, G(X) = k means that X is just as (un)predictable as a stochastic
experiment with k equiprobable possible outcomes.

2.1.3 Joint and Conditional Entropy

e Idea: Consider combinations of 2 random variables X and Y.

e Joint Entropy: measures unpredictability of value pairs (z,y) € Qx X
Qy.

e Conditional Entropy: measures (possibly reduced) unpredictability of
an event given knowledge of a (different) event — allows us to quantify
dependence.

Definition 3 (Joint Entropy) For two random variables X and Y, the joint
entropy of X and Y is written H(X,Y') and is defined as:

H(Xa Y) = Z Z p(x,y) '10gp($,y)

z€Qx YyeQy

Definition 4 (Conditional Entropy) For two random variables X and Y,
the conditional entropy of Y given X is written H(Y|X) and is defined as:

HYIX) = 3 p@)H(Y]X =)

rzEQx

> o) [ = D plylz)logp(yle)

€N x yEQy
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= =Y > p)p(ylr)logp(ylz)

T€Qx YyeQy

= = > Y p,y) - logp(ylr)

€N x yeQy

= H(X,Y)-H(X)

Some Properties of Joint and Conditional Entropy

e Chain Rule

H(X,Y) = H(X[Y)+H(®Y)=HY|X)+H(X)

e Conditional Entropy Maximum
H(Y|X) <H(Y)
e Addition Rule
H(X,Y) < H(X) + H(Y)
If X and Y are independent, then:

H(X,Y) = H(X) + H(Y)

2.2 Relative Entropy

e Idea: measure similarity between two distributions p and q.
e Method: compute mean number of bits wasted when encoding events

governed by one distribution with an optimal code for the other.

Definition 5 (Relative Entropy) Let p and ¢ be probability distributions
over a set () of basic outcomes. The relative entropy of p and ¢ — also known
as the Kullback-Leibler divergence of p and ¢ — is written D(p||q), and defined
as the average number of bits wasted when encoding a stochastic process with
distribution p under an optimal code for ¢:

Dol = 3 p) z’

e
= log —(x
q(z)
Some Properties of Relative Entropy

e Relative entropy is always non-negative: D(p|l¢) > 0.
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* D(pllg) =0iff p=gq
o Caveats: Relative entropy is not a metric:

— No Symmetry: oD(pllq) # D(qllp)
— No Triangle Inequality: ©D(p|l¢) £ D(q||p)

2.3 Mutual Information

e Idea: Exploit dependence when simultaneously encoding outcomes of two
stochastic processes.

e Method: Compute relative entropy between the actual joint distribution
and an independent distribution — essentially an information gain ratio
with respect to the assumption that the two distributions are independent.

Definition 6 (Mutual Information) Let X and Y be random variables. The

mutual information between X and Y is written I(X;Y") and defined as the

relative entropy of the joint distribution and an independent distribution:
I(X;Y) D(p(X,Y)[p(X)p(Y))

B P(X.Y)
= Boen) (lOg (X)pm)

p(z,y)
2 2wyl onis

r€Qx YyeQy

Some Properties of Mutual Information

¢ Relation to Entropy:

I(X;Y) = H(X)-HXY)
= H(Y)-H(Y[X)
= H(X)+H(Y)-H(X,Y)
= I(V;X)

I(X;X) = H(X)

Definition 7 (Pointwise Mutual Information) Let z and y be values of
random variables X and Y, respectively: z € Qx,y € Q,. The pointwise
mutual information between x and y is written I(z,y) and defined:

p(z,y)
p(x)p(y)

Pointwise MI is symmetric, but may be negative. It can be used as an indicator
of the association between individual elements (points)  and y, but is highly
sensitive to low probabilities, so it is sometimes additionally weighted by e.g.

p(x,y).

I(x,y) = log
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; H(XIY) =% H(YIX) |
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Figure 1: Mutual Information and various entropies
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