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2 Information Theory

Information theory grew largely out of work published in the late 1940s by
Claude Shannon, and stems from a theoretical framework in which stochastic
trials represent communication, aka data transmission. Shannon’s work itself
can be understood as motivated to a large degree by his cryptographic work at
Bletchley Park together with Alan Turing during the Second World War; thus
Shannon’s model is expressed in terms of encoding or compression.

2.1 Entropy

• History:

– Terminology from physics (thermodynamics)

– Entropy rises as energy (heat) is added to a system.

• Intuitive Definition:

– Entropy = “chaos”, disorder, unpredictability, . . .

– Entropy as a measure of uncertainty with respect to the outcome of
a stochastic trial:

∗ Low entropy → low uncertainty

∗ High entropy → high uncertainty

Definition 1 (Entropy) Let X be a random variable with distribution p.
Then, the entropy of X is written H(X), and is defined as the mean negative
binary logarithm of the probability:

H(X) := −
∑

x∈ΩX

p(x) log2 p(x)

=
∑

x∈ΩX

p(x) log2

1

p(x)

• Binary logarithm used to measure entropy in bits: unless otherwise spec-
ified, log x = log2 x

• By convention, we let 0 log 0 = 0 and p log p

0 = ∞ when computing entropy
(and other related quantities).

• Notational variants: H(X) = H(p) = HX(p) = H(pX)

Example 1 (Entropy: Fair Coin)

p(0) = p(1) = 0.5

H(p) = −(0.5 log 0.5 + 0.5 log 0.5) = −2 · (0.5 · −1) = 1
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Example 2 (Entropy: Fair Die)

p(i) =
1

6
for 1 ≤ i ≤ 6

H(p) = 6 ·

(

1

6
log 6

)

= log 6 ≈ 2.58

Example 3 (Entropy: Unfair Coin)

p(1) = 0.2 , p(0) = 0.8

H(p) = −(0.2 log 0.2 + 0.8 log 0.8) ≈ 0.722

Some Properties of Entropy

• Entropy is non-negative: H(X) ≥ 0

• If p(x) = 1 for some x ∈ ΩX , then H(p) = 0

• There is no global upper bound on entropy, but:

– Uniform distributions maximize entropy (are most unpredictable)

– In a uniform distribution, all outcomes are equiprobable: p(x) =
1

|ΩX | , so H(X) ≤ log |ΩX |.

2.1.1 Entropy and Encoding

Shannon’s notion of entropy represents the average number of bits required
to encode the outcome of a single stochastic trial properly modelled by the
distribution p in an optimal encoding (read: “maximally compressed”):

• Recall: a binary string with n bits can take 2n possible values – this is
just the number of binary decisions one has to make to determine which
of n equiprobable events has occurred (binary search).

• Idea: using variable-length codes, an optimal encoding scheme will be
one in which common messages (read: “outcomes with high probability”)
are encoded with fewer bits than uncommon messages.1

• Method: Knowledge of the probability distribution p gives us a way to
determine the minimal number of bits required to encode the occurrence
of each outcome x: min(length(code(x))) = − log2 p(x); Shannon entropy
is just the mean of this quantity.

1There’s nothing magical about bits here — we could use logarithms of any arbitrary base b

to express code lengths in a b-adic number system. Use of the binary (base-2) number system
is just a useful convention.
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Example 4 (Entropy: DNA) Suppose we wish to encode a particular DNA
(sub)sequence; then:

• Outcomes:
Ω = {A,C, T,G}

• Näıve Code code1:

A : 00, C : 01,T : 10,G : 11

• Mean (näıve) Code Length:

E(length(code1(X))) =
∑

x∈Ω

p(x) · length(code1(x))

= (0.5 · 2) + (0.25 · 2) + 2(0.125 · 2)
= 2 bits

• Distribution:

p(A) = 0.5, p(C) = 0.25, p(T ) = 0.125, p(G) = 0.125

• Minimal Code Lengths = − log p(x):

A : 1 bit, C : 2 bits, T : 3 bits, G : 3 bits

• Entropy = Weighted Mean (minimal) Code Length:

H(X) =
∑

x∈Ω

p(x) · min(length(code(x)))

=
∑

x∈Ω

p(x) · − log p(x)

= (0.5 · 1) + (0.25 · 2) + (0.125 · 3) + (0.125 · 3)
= 1.75 bits

• Oops! Näıve code ain’t so great:

E(length(code1(X))) > H(X)

• Improved Code code2:

A : 1, C : 01,T : 000,G : 001

• Weighted Mean (improved) Code Length:

E(length(code2(X))) =
∑

x∈Ω

p(x) · length(code2(x))

= (0.5 · 1) + (0.25 · 2) + 2(0.125 · 3)
= 1.75 bits

• Yipee! Improved code is optimal.

E(length(code2(X))) = H(X)
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2.1.2 Perplexity

• Idea: Comparison of information content between two random variables
whose sample spaces are of different size – i.e. where we can’t simply
normalize by |Ω|.

• Method: Formalize notion of “information content” in terms of stochastic
experiments with uniform distributions, where the only relevant variable
is |Ω|.

• Side Effect: Perplexity values are much larger than (normalized) en-
tropies.

Definition 2 (Perplexity) For a random variable X with distribution p, the
perplexity of X is written G(X) and is defined as:

G(X) := 2H(X)

Intuitively, G(X) = k means that X is just as (un)predictable as a stochastic
experiment with k equiprobable possible outcomes.

2.1.3 Joint and Conditional Entropy

• Idea: Consider combinations of 2 random variables X and Y .

• Joint Entropy: measures unpredictability of value pairs (x, y) ∈ ΩX ×
ΩY .

• Conditional Entropy: measures (possibly reduced) unpredictability of
an event given knowledge of a (different) event – allows us to quantify
dependence.

Definition 3 (Joint Entropy) For two random variables X and Y , the joint
entropy of X and Y is written H(X,Y ) and is defined as:

H(X,Y ) = −
∑

x∈ΩX

∑

y∈ΩY

p(x, y) · log p(x, y)

Definition 4 (Conditional Entropy) For two random variables X and Y ,
the conditional entropy of Y given X is written H(Y |X) and is defined as:

H(Y |X) =
∑

x∈ΩX

p(x)H(Y |X = x)

=
∑

x∈ΩX

p(x)



−
∑

y∈ΩY

p(y|x) log p(y|x)
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= −
∑

x∈ΩX

∑

y∈ΩY

p(x)p(y|x) log p(y|x)

= −
∑

x∈ΩX

∑

y∈ΩY

p(x, y) · log p(y|x)

= H(X,Y ) − H(X)

Some Properties of Joint and Conditional Entropy

• Chain Rule

H(X,Y ) = H(X|Y ) + H(Y ) = H(Y |X) + H(X)

• Conditional Entropy Maximum

H(Y |X) ≤ H(Y )

• Addition Rule
H(X,Y ) ≤ H(X) + H(Y )

If X and Y are independent, then:

H(X,Y ) = H(X) + H(Y )

2.2 Relative Entropy

• Idea: measure similarity between two distributions p and q.

• Method: compute mean number of bits wasted when encoding events
governed by one distribution with an optimal code for the other.

Definition 5 (Relative Entropy) Let p and q be probability distributions
over a set Ω of basic outcomes. The relative entropy of p and q — also known
as the Kullback-Leibler divergence of p and q — is written D(p‖q), and defined
as the average number of bits wasted when encoding a stochastic process with
distribution p under an optimal code for q:

D(p‖q) =
∑

x∈Ω

p(x) log
p(x)

q(x)

= Ep

(

log
p(x)

q(x)

)

Some Properties of Relative Entropy

• Relative entropy is always non-negative: D(p‖q) ≥ 0.
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• D(p‖q) = 0 iff p = q

• Caveats: Relative entropy is not a metric:

– No Symmetry: ¦D(p‖q) 6= D(q‖p)

– No Triangle Inequality: ¦D(p‖q) 6≤ D(q‖p)

2.3 Mutual Information

• Idea: Exploit dependence when simultaneously encoding outcomes of two
stochastic processes.

• Method: Compute relative entropy between the actual joint distribution
and an independent distribution – essentially an information gain ratio
with respect to the assumption that the two distributions are independent.

Definition 6 (Mutual Information) Let X and Y be random variables. The
mutual information between X and Y is written I(X;Y ) and defined as the
relative entropy of the joint distribution and an independent distribution:

I(X;Y ) = D(p(X,Y )‖p(X)p(Y ))

= Ep(X,Y )

(

log
p(X,Y )

p(X)p(Y )

)

=
∑

x∈ΩX

∑

y∈ΩY

p(x, y) log
p(x, y)

p(x)p(y)

Some Properties of Mutual Information

• Relation to Entropy:

I(X;Y ) = H(X) − H(X|Y )

= H(Y ) − H(Y |X)

= H(X) + H(Y ) − H(X,Y )

= I(Y ;X)

I(X;X) = H(X)

Definition 7 (Pointwise Mutual Information) Let x and y be values of
random variables X and Y , respectively: x ∈ ΩX , y ∈ Ωy. The pointwise
mutual information between x and y is written I(x, y) and defined:

I(x, y) = log
p(x, y)

p(x)p(y)

Pointwise MI is symmetric, but may be negative. It can be used as an indicator
of the association between individual elements (points) x and y, but is highly
sensitive to low probabilities, so it is sometimes additionally weighted by e.g.
p(x, y).
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H(X|Y) H(Y|X)

H(X) H(Y)

H(X,Y)

0 1 1 0 0 1 0 1 0 0 1 1 0 0... 0

I(X;Y)
= I(Y;X)

Figure 1: Mutual Information and various entropies
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