Stochastic Context Free Languages

Bryan Jurish
jurish@ling.uni-potsdam.de
Universität Potsdam, Institut für Linguistik,
Potsdam, Germany

2005-06-30

Outline

The Basics

- Definitions
- Assumptions
- Language Model

Efficient String Probability Computation

- Inside Algorithm
- Outside Algorithm

Parameter Reestimation

- Inside-Outside Algorithm
- Commentary and Caveats
- ．

Basics

SCFG: Definition

A Stochstic Context-Free Grammar (SCFG or PCFG) is a 5 -tuple $G=\langle V, N, R, S, P\rangle$, where:

- $\langle V, N, R, S\rangle$ is a context-free grammar over the terminal alphabet $\mathcal{A}=V-N$ in Chomsky normal form.
- $P: R \rightarrow[0,1]$ is a probability distribution on the rules of R conditioned on their left-hand-sides:

$$
\forall A \in N: \sum_{\alpha \in V^{*}} P(A \rightarrow \alpha \mid A)=1
$$

- We write $P(\alpha \mid A)$ or $P(A \rightarrow \alpha)$ for $P(A \rightarrow \alpha \mid A)$ where convenient

SCFG: Assumptions

Given an SCFG G, the following are assumed to hold for all strings $w=w_{1 . . n} \in \mathcal{A}^{*}$, substrings $\zeta \in \mathcal{A}^{*}$, nonterminals $A, B \in N$, and string position indices $0 \leq k, \ell \leq n$:

- Place Invariance

$$
P\left(A \triangleleft_{k, \ell}^{*} \zeta \mid A\right)=P\left(A \triangleleft_{1, \ell-k+1}^{*} \zeta \mid A\right)
$$

- Context Freedom

$$
P\left(A \triangleleft_{k, \ell}^{*} \zeta \mid w_{1 . . k-1}, A, w_{\ell+1 . . n}\right)=P\left(A \triangleleft_{k, \ell}^{*} \zeta \mid A\right)
$$

- Ancestor Freedom

$$
P\left(A \triangleleft_{k, \ell}^{*} \zeta \mid B \triangleleft_{k-i, \ell+j}^{+} \nu \zeta \eta, A\right)=P\left(A \triangleleft_{k, \ell}^{*} \zeta \mid A\right)
$$

SCFG: Probability

Tree Probability
The probability $P_{G}(t)=P(t \mid G)$ of generating of a tree $t \in T(V \times \mathbb{N})$ with an SCFG G is defined for $A \in N, a \in \mathcal{A}, t_{1}, t_{2} \in T(V \times \mathbb{N}):$

$$
\begin{aligned}
P(\langle A, 1\rangle(a) \mid G) & =P(a \mid A) \\
P\left(\langle A, 2\rangle\left(t_{1}, t_{2}\right) \mid G\right) & =P\left(\operatorname{root}\left(t_{1}\right) \operatorname{root}\left(t_{2}\right) \mid A\right) P\left(t_{1}\right) P\left(t_{2}\right)
\end{aligned}
$$

String Probability
The probability $P_{G}(w)=P(w \mid G)$ of generating a string $w \in \mathcal{A}^{*}$ with an SCFG G is:

$$
P(w \mid G) \sum_{t \in T(V \times \mathbb{N}): \operatorname{root}(t)=S \& y \operatorname{yield}(t)=w} P(t \mid G)
$$

SCFG: Language Model

- The stochastic string language generated by an SCFG G is the probability distribution $P(\cdot \mid G): \mathcal{A}^{*} \rightarrow[0,1]$ over terminal strings:

$$
\sum_{w \in \mathcal{A}^{*}} P(w \mid G) \leq 1
$$

NOTE: G may not define a string language model in the technical sense, as some probability mass may be lost on "useless" trees.

- The symbolic or categorical language $\mathcal{L}(G)$ generated by G is the set of strings generated by G with nonzero probability:

$$
\mathcal{L}(G)=\{w \mid P(w \mid G) \neq 0\}
$$

${ }^{d_{d m}}$ ．

String Probability Computation

String Probability

The Problem

- Efficiently compute $P(w \mid G)$ for given w and G
- Definition: $P(w \mid G)=\sum_{t \in \text { yield }^{-1}(w)} P(t \mid G)$
- Bummer: $\left|\operatorname{yield}^{-1}(w)\right|=O\left(c^{|w|}\right)$

The Solution

- Dynamic programming approach
- Akin to forward-, backward-algorithms for HMMs
- Inside probabilities: $\alpha_{i, j}(A)$
- Outside probabilities: $\beta_{i, j}(A)$

㟨Inside \& Outside Probabilities

Inside Probability

$$
\beta_{i, j}(A)=P\left(w_{i . . j} \mid A \triangleleft_{i, j}^{*} w, G\right)
$$

- Total probability of generating substring $w_{1 . . j}$ as the yield of a subtree rooted at A.

Outside Probability

$$
\alpha_{i, j}(A)=P\left(w_{1 . . i-1}, A \triangleleft_{i, j}^{*} w, w_{j+1 . . n} \mid G\right)
$$

- Total probability of generating a partial derivation lacking only the substructure $A \triangleleft_{i, j}^{*} w$ for completion. $\stackrel{\times}{0} d_{\mathrm{am}}$

Inside \& Outside

Inside Algorithm: Basis

Notation
Let $A \triangleleft_{i, j}^{*} w$ be abbreviated ${ }_{i} A_{j}$
The Approach

$$
\begin{aligned}
P\left(w_{1 . . n} \mid G\right) & =P\left(S \Rightarrow^{*} w_{1 . . n} \mid G\right) \\
& =P\left(\left.w_{1 . . n}\right|_{1} S_{n}, G\right) \\
& =\beta_{1, n}(S)
\end{aligned}
$$

Basis: Lexical Insertion $(i=j)$

$$
\begin{aligned}
\beta_{i, i}(A) & =P\left(\left.w_{i}\right|_{i} A_{i}, G\right) \\
& =P\left(A \rightarrow w_{i} \mid G\right)
\end{aligned}
$$

Inside Algorithm: Induction

$$
\begin{aligned}
& \beta_{i, j}(A)=P\left(\left.w_{i . . j}\right|_{i} A_{j}, G\right) \\
& {[\text { Marg }]=\sum_{B, C} \sum_{k=i}^{j-1} P\left(w_{i . . k},{ }_{i} B_{k}, w_{k+1 . . j},\left.{ }_{k+1} C_{j}\right|_{i} A_{j}, G\right)} \\
& \text { [Chain] }=\sum_{B, C} \sum_{k=i}^{j-1} P\left({ }_{i} B_{k},{ }_{k+1} C_{j} \mid{ }_{i} A_{j}, G\right) \\
& \times P\left(w_{i . k} \mid{ }_{i} A_{j},{ }_{i} B_{k},{ }_{k+1} C_{j}, G\right) \\
& \times P\left(w_{k+1 . . j} \mid w_{i . . k},{ }_{i} A_{j},{ }_{i} B_{k},{ }_{k+1} C_{j}, G\right) \\
& {[\text { Indp }]=\sum_{B, C} \sum_{k=i}^{j-1} P\left({ }_{i} B_{k},\left.{ }_{k+1} C_{j}\right|_{i} A_{j}, G\right)} \\
& \times P\left(\left.w_{i . . k}\right|_{i} B_{k}, G\right) \\
& \times P\left(\left.w_{k+1 . . j}\right|_{k+1} C_{j}, G\right) \\
& {\left[\text { Defn] }=\sum_{B, C} \sum_{k=i}^{j-1} P(A \rightarrow B C) \beta_{i, k}(B) \beta_{k+1, j}(C)\right.}
\end{aligned}
$$

Outside Algorithm: Basis

The Approach: $\forall k, 1 \leq k \leq n$,

$$
\begin{aligned}
P\left(w_{1 . . n} \mid G\right)= & \sum_{A} P\left(w_{1 . . k-1}, w_{k}, w_{k+1 . . n},{ }_{k} A_{k} \mid G\right) \\
= & \sum_{A} P\left(w_{1 . . k-1},{ }_{k} A_{k}, w_{k+1 . . n}, \mid G\right) \\
& \times P\left(w_{k} \mid w_{1 . . k-1},{ }_{k} A_{k}, w_{k+1 . . n}, G\right) \\
= & \sum_{A} \alpha_{k, k}(A) P\left(A \rightarrow w_{k}\right)
\end{aligned}
$$

Basis: Root Node

$$
\alpha_{1, n}(A)= \begin{cases}1 & \text { if } A=S \\ 0 & \text { otherwise }\end{cases}
$$

Outside Algorithm: Induction

$$
\begin{aligned}
& \alpha_{i, j}(A)=\left[\sum_{B, C \neq A} \sum_{k=j+1}^{n} P\left(w_{1 . . i-1}, w_{j+1 . . n},{ }_{i} B_{k},{ }_{i} A_{j, j+1} C_{k}\right)\right] \\
& +\left[\sum_{B, C} \sum_{k=1}^{i-1} P\left(w_{1 . . i-1}, w_{j+1 . . n},{ }_{k} B_{j, k} C_{i-1},{ }_{i} A_{j}\right)\right] \\
& =\left[\begin{array}{rl}
\sum_{B, C \neq A} \sum_{k=j+1}^{n} P\left(w_{1 . . i-1}, w_{k+1 . n},{ }_{i} B_{k}\right) \\
& \times P\left({ }_{i} A_{j},\left.{ }_{j+1} C_{k}\right|_{i} B_{k} P\left(\left.w_{j+1} k\right|_{j+1} C_{k}\right)\right.
\end{array}\right] \\
& +\left[\sum_{B, C} \sum_{k=1}^{i-1} P\left(w_{1 . . k-1}, w_{j+1 . . n, k} B_{j}\right)\right. \\
& \left.\times P\left({ }_{k} C_{i-1},\left.{ }_{i} A_{j}\right|_{k} B_{j}\right) P\left(\left.w_{k . i-1}\right|_{k} C_{i-1}\right)\right] \\
& =\left[\sum_{B, C \neq A} \sum_{k=j+1}^{n} \alpha_{i, k}(B) P(B \rightarrow A C) \beta_{j+1, k}(C)\right] \\
& +\left[\sum_{B, C} \sum_{k=1}^{i-1} \alpha_{k, j}(B) P(B \rightarrow C A) \beta_{k, i-1}(C)\right]
\end{aligned}
$$

Outside: Left Daughter

?
 $\stackrel{8}{d}_{a_{m}}$
 Outside: Right Daughter

IO Probabilities Combined

Inside-Outside Product

- As for HMMs, $\alpha \beta$ gives us the joint probability of the string and a nonterminal node:

$$
\begin{aligned}
\alpha_{i, j}(A) \beta_{i, j}(A) & =P\left(w_{1 . . i-1},{ }_{i} A_{j}, w_{j+1 . . n} \mid G\right) P\left(\left.w_{i . . j}\right|_{i} A_{j}, G\right) \\
& =P\left(w_{1 . . n},{ }_{i} A_{j} \mid G\right)
\end{aligned}
$$

Sum of Products

- Summing over $\alpha \beta$ products is tricky, since we must consider non-constituent substrings:

$$
P\left(w_{1 . . n}, \exists A:{ }_{i} A_{j} \mid G\right)=\sum_{A} \alpha_{i, j}(A) \beta_{i, j}(A)
$$

Paramter Reestimation

Parameter Reestimation

Idea: Expectation Maximization

- Unsupervised parameter reestimation for SCFGs
- Analagous to Baum-Welch algorithm for HMMs
- Expect: compute sentence probability
- Maximize: adjust SCFG parameters

Specification

- Input:
- SCFG $G=\langle V, N, R, S, P\rangle$
- Training sentence w (extension: corpus)
- Output:
- Reestimated SCFG $\hat{G}=\langle V, N, R, S, \hat{P}\rangle$ such that $P(w \mid \hat{G}) \geq P(w \mid G)$

EM: The Plan

Excursus: the supervised case

- Given a treebank, an ML estimator for P is:

$$
\begin{aligned}
P_{M L}(A \rightarrow \zeta) & =\frac{f(A \triangleleft \zeta)}{f(A)} \\
& =\frac{f(A \triangleleft \zeta)}{\sum_{\gamma} f(A \triangleleft \gamma)}
\end{aligned}
$$

- All we need to do is estimate $f(A \triangleleft \zeta)$ for all $A \in N, \zeta \in \mathcal{A} \cup N^{2}$
- Given an initial grammar, we can use α, β to compute expected frequencies ...

EM: Nonterminal Frequency

Recall:

$$
\begin{aligned}
\alpha_{i, j}(A) \beta_{i, j}(A) & =P\left(S \Rightarrow^{*} w_{1 . . n}, A \Rightarrow^{*} w_{i . . j} \mid G\right) \\
& =P\left(S \Rightarrow^{*} w_{1 . .} \mid G\right) P\left(A \Rightarrow^{*} w_{i . j} \mid S \Rightarrow^{*} w_{1 . . n}, G\right)
\end{aligned}
$$

therefore,

$$
P\left(A \Rightarrow^{*} w_{i . . j} \mid S \Rightarrow^{*} w_{1 . . n}, G\right)=\frac{\alpha_{i, j}(A) \beta_{i, j}(A)}{P\left(S \Rightarrow^{*} w_{1 . . n} \mid G\right)}
$$

so we can estimate:

$$
E(A)=\sum_{i=1}^{n} \sum_{j=i}^{n} \frac{\alpha_{i, j}(A) \beta_{i, j}(A)}{P\left(S \Rightarrow^{*} w_{1 . . n} \mid G\right)}
$$

EM: Internal Branches

Note that $\forall B, C, i, j$:

$$
\begin{aligned}
P(A & \left.\Rightarrow B C \Rightarrow^{*} w_{i . . j} \mid S \Rightarrow^{*} w_{1 . . n}, G\right) \\
& =\frac{\sum_{k=i}^{j-1} \alpha_{i, j}(A) P(A \rightarrow B C) \beta_{i, k}(B) \beta_{k+1, j}(C)}{P\left(S \Rightarrow^{*} w_{1 . . n} \mid G\right)}
\end{aligned}
$$

summing, we get:

$$
\begin{aligned}
E(A & \rightarrow B C, A) \\
& =\frac{\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sum_{k=i}^{j-1} \alpha_{i, j}(A) P(A \rightarrow B C) \beta_{i, k}(B) \beta_{k+1, j}(C)}{P\left(S \Rightarrow^{*} w_{1 . . n} \mid G\right)}
\end{aligned}
$$

so that we wind up maximizing with:

$$
\begin{aligned}
\hat{P}(A & \rightarrow B C \mid A)=\frac{E(A \rightarrow B C, A)}{E(A)} \\
& =\frac{\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sum_{k=i}^{j-1} \alpha_{i, j}(A) P(A \rightarrow B C) \beta_{i, k}(B) \beta_{k+1, j}(C)}{\sum_{i=1}^{n} \sum_{j=i}^{n} \alpha_{i, j}(A) \beta_{i, j}(A)}
\end{aligned}
$$

EM: Preterminals

Note also:

$$
\begin{aligned}
P\left(A \Rightarrow w_{k} \mid S \Rightarrow^{*} w_{1 . . n}, G\right) & =\frac{\sum_{i=1}^{n} \alpha_{i, i}(A) P\left(A \rightarrow w_{i}, w_{i}=w_{k}\right)}{P\left(S \Rightarrow^{*} w_{1 . . n} \mid G\right)} \\
& =\frac{\sum_{i=1}^{n} \alpha_{i, i}(A) P\left(w_{i}=w_{k}\right) \beta_{i, i}(A)}{P\left(S \Rightarrow^{*} w_{1 . . n} \mid G\right)} \\
& =E\left(A \rightarrow w_{k}, A\right)
\end{aligned}
$$

so that we can maximize with:

$$
\begin{aligned}
\hat{P}\left(A \rightarrow w_{k} \mid A\right) & =\frac{E\left(A \rightarrow w_{k}, A\right)}{E(A)} \\
& =\frac{\sum_{i=1}^{n} \alpha_{i, i}(A) P\left(w_{i}=w_{k}\right) \beta_{i, i}(A)}{\sum_{i=1}^{n} \sum_{j=i}^{n} \alpha_{i, j}(A) \beta_{i, j}(A)}
\end{aligned}
$$

Caveat Programmor

- EM is dog slow: $O=O\left(n^{3}|N|^{3}\right)$
- Many nonterminals required for accurate learning (did I mention it was dog slow?)
- Local maxima problem: huge parameter space - a priori restrictions can help here
- Doubtful linguistic utility:
-"What the heck is a N29?"
- SCFGs really like small trees
- No account of non-local precedence phenomena
- Using an HMM for the lexical insertion stage helps here, and reduces alphabet size to boot

The End

