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1 Probability Theory

1.1 Axiomatic Definition (Kolmogoroff)

Basic Building Blocks

• Ω: the sample space, a set of basic outcomes.

• S ⊆ 2Ω: the event space, a σ-field on Ω:

– non-empty: S 6= ∅
– closed under complement: ∀x ∈ S : x ∈ S

– closed under union: ∀x, y ∈ S : x ∪ y ∈ S

A probability distribution for an event space S is a (total) function: P : S → �

which fulfills Axioms (1) through (3):

1. For arbitrary events A, A ∈ S ⇒ P (A) ≥ 0

2. P (Ω) = 1

3. For arbitrary sequences of pairwise disjoint events A1, A2, . . . ∈ S :

P

(
∞⋃

i=1

Ai

)

=
∞∑

i=1

P (Ai)

Theorem 1 (Empty Event) P (∅) = 0

Theorem 2 (Finite Sums) For arbitrary finite sequences of pairwise disjoint
events A1, A2, . . . , An :

P

(
n⋃

i=1

Ai

)

=
n∑

i=1

P (Ai)

Theorem 3 (Subtraction Rule) For arbitrary A ∈ S:

P (A) = 1 − P (A)

Theorem 4 (Probability Range) For arbitrary A ∈ S:

0 ≤ P (A) ≤ 1

Theorem 5 (Subevent Probability) For A,B ∈ S:

A ⊆ B ⇒ P (A) ≤ P (B)
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Theorem 6 (Addition Rule) For arbitrary A,B ∈ S:

P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

Law of Large Numbers: Given the axioms (and theorems) above, we can
approach the “statistical” definition of probability by noting that since the rel-

ative frequency n(A)
n can vary between experimental runs, we can speak of the

probability that it lies in a given interval. If the actual probability of the event
is P (A), then we can say for an arbitrary ε ∈ �

that:

lim
n→∞

P

(∣
∣
∣
∣

n(A)

n
− P (A)

∣
∣
∣
∣
< ε

)

= 1

This assertion is known as the Law of Large Numbers.

1.2 Stochastic (In)Dependence

Definition 1 (Stochastic Independence) Two events A and B are said to
be independent iff:

P (A ∩ B) = P (A) × P (B)

Theorem 7 If two events A and B are independent, then A and B, A and B,
as well as A and B are also independent.

1.2.1 Conditional Probability

Definition 2 Given P (B) > 0, the conditional probability of A given B P (A|B)
is defined as:

P (A|B) :=
P (A ∩ B)

P (B)

Theorem 8 Assuming P (B) > 0, two events A and B are independent iff

P (A|B) = P (A)

Theorem 9 (Multiplication Rule) For all A,B ∈ S:

P (B)P (A|B) = P (A ∩ B) = P (A)P (B|A)

Theorem 10 (Chain Rule) For n ∈ � , A1, . . . , An ∈ S:

P (A1 ∩ · · · ∩ An) = P (A1)P (A2|A1)P (A3|A1 ∩ A2) · · ·P (An|A1 ∩ · · · ∩ An−1)

. . . somewhat prettier:

P

(
n⋂

i=1

Ai

)

= P (A1)

n∏

i=2

P



Ai

∣
∣
∣
∣
∣
∣

i−1⋂

j=1

Aj
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The “Chain Rule”, together with assumptions of independence between events,
provides a powerful tool for reduction of the computational complexity of many
stochastic models (read: “get used to it”).

Theorem 11 (Bayes’ Theorem)

P (B|A) =
P (A|B)P (B)

P (A)

1.3 Random Variables

• Axioms Ω can be any (non-empty) set.

• It is often easier (sometimes even more natural) to restrict our observations
to a set of numbers, such as

�
.

• Random variables are used to map any sample space Ω (partially) to
�

.

Definition 3 (Random Variable) Let S be an event space over a set Ω of
basic outcomes, and let P be a probability distribution over S. A random
variable (over Ω) is a function:

X : Ω → �

such that for all x ∈ �
: {ω ∈ Ω | X(ω) = x} ∈ S

Example 1 (Coin Toss: Random Variable) Let Ω = {heads, tails}. Then,
X = {(heads, 0), (tails, 1)} is a random variable over Ω:

X(heads) = 0

X(tails) = 1

Example 2 (Two Dice: Random Variable) For the throw of two dice, let

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}. Then, X =
⋃6

i=1

⋃6
j=1{((i, j), i + j)} is a

random variable over Ω:

X(1, 1) = 1 + 1 = 2
X(1, 2) = 1 + 2 = 3

...
X(6, 6) = 6 + 6 = 12

1.3.1 Discrete vs. Continuous Random Variables

A discrete random variable is one whose image under Ω (X(Ω)) is finite or count-
able. A continuous random variables is one whose image under Ω is uncountably
infinite and continuous (for instance, X(Ω) = [0, 1]), and whose cumulative dis-
tribution function is differentiable with a continuous derivative except in at most
a finite number of points.
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1.4 Probability Mass Functions

A probability mass function (sometimes simply called a probability function)
is determined by a random variable X and a probability distribution P over
Ω = dom(X).

Definition 4 (Probability Mass Function) Let X be a random variable over
a set Ω of basic outcomes, and let P be a probability distribution over Ω. Then,
the probability mass function (pmf) associated with X is given by:

pX(x) = p(X = x) = P ({ω ∈ Ω | X(ω) = x})

It can be shown that pX is always a probability distribution over
�

. Often, the
subscript X is omitted from the probability mass function pX when the random
variable concerned is clear from the context.

Example 3 (Coin Toss: Probability Function) Assuming the coin is fair,
P (heads) = P (tails) = 1

2 . Therefore, pX(0) = pX(1) = 0.5, and ∀x ∈ � −
{0, 1} : pX(x) = 0.

Example 4 (Two Dice: Probability Function) Probability mass is distributed
according to the following table:

x X−1(x) pX(x)

2 {(1, 1)} 1/36
3 {(1, 2), (2, 1)} 2/36
4 {(1, 3), (2, 2), (3, 1)} 3/36
5 {(1, 4), (2, 3), (3, 2), (4, 1)} 4/36
6 {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} 5/36
7 {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} 6/36
8 {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} 5/36
9 {(3, 6), (4, 5), (5, 4), (6, 3)} 4/36
10 {(4, 6), (5, 5), (6, 4)} 3/36
11 {(5, 6), (6, 5)} 2/36
12 {(6, 6)} 1/36

1.5 Some Properties of Random Variables

1.5.1 Sample Space

Definition 5 (Sample Space of a Random Variable) The sample space of
a random variable X is just the image of X under Ω, and is written ΩX

ΩX := X(Ω) =
⋃

ω∈Ω

{X(ω)}
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1.5.2 Expectation Value

Definition 6 (Expectation Value) The expectation value E(X) of a random
variable X is simply the mean or average value of that variable, computed as a
weighted sum of the variable’s sample space:

E(X) =
∑

x∈ΩX

pX(x) · x

One common convention uses the Greek letter µ to denote the expectation value
of a random variable, when the particular variable is clear from the surrounding
context: µ = E(X).

Example 5 (Coin Toss: Expectation Value)

E(X) = X(heads) · pX(X(heads)) + X(tails) · pX(X(tails))
= 0 · 0.5 + 1 · 0.5
= 0.5

Example 6 (Two Dice: Expectation Value)

E(X) =
1

36
· 2 +

2

36
· 3 +

3

36
· 4 +

4

36
· 5 +

5

36
· 6 +

6

36
· 7 +

5

36
· 8 +

4

36
· 9 +

3

36
· 10 +

2

36
· 11 +

1

36
· 12

= 7

Every function g :
� → �

can be used to map a random variable X to a
new random variable Y = g(X). The expectation value of such a functionally
composed random variable is given by:

E(Y ) = E(g(X)) =
∑

x∈ΩX

p(x) · g(x)

In particular, it is interesting (and useful) to note that . . .

Theorem 12 (Expectation Value of Linear Functions) If g :
� → �

is a
linear function – that is, if g(x) = ax+ b for some constants a, b ∈ �

and for all
x ∈ �

, then E(g(X)) can be computed as a function of E(X):

E(g(X)) = E(aX + b) = aE(X) + b

Theorem 13 (Sum of Expectation Values) The sum of linear combinations
of arbitrary random variables can be computed in terms of the expectation val-
ues of the variables themselves:

E(aX + bY ) = aE(X) + bE(Y )
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Theorem 14 (Product of Independent Expectation Values) If X and Y
are independent random variables, then:

E(X · Y ) = E(X) · E(Y )

1.5.3 Variance

Definition 7 (Variance) The variance of a random variable X is a measure
of how widely that variable’s values are distributed, computed as the average
square difference between the variable’s values its mean:

V ar(X) := E((X − E(X))2)
= E(X2) − E(X)2

It is common to write σ2 to refer to the variance of a random variable, when
the random variable in question is clear from the surrounding context: σ2 =
V ar(X). This is largely due to the fact that the standard deviation – commonly
written σ – is defined as the square root of the variance: σ =

√

V ar(X).

Example 7 (Coin Toss: Variance)

V ar(X) = E((X − 0.5)2)
=

∑

x∈ΩX

pX(x) · (x − 0.5)2

= 0.5 · (0 − 0.5)2 + 0.5 · (1 − 0.5)2

= 0.5 · −0.52 + 0.5 · .52

= 0.5 · 0.25 + 0.5 · .25
= 0.125 + 0.125
= 0.25

Example 8 (Two Dice: Variance)

V ar(X) = E(X2) − E(X)2

= 22 · 1
36 + 32 · 2

36 + 42 · 3
36 + 52 · 4

36 + 62 · 5
36 + 72 · 6

36+
82 · 5

36 + 92 · 4
36 + 102 · 3

36 + 112 · 2
36 + 122 · 1

36
−72

= 4 · 1
36 + 9 · 2

36 + 16 · 3
36 + 25 · 4

36 + 46 · 5
36 + 49 · 6

36+
64 · 5

36 + 81 · 4
36 + 100 · 3

36 + 121 · 2
36 + 144 · 1

36
−49

= 35/6
≈ 5.83

1.6 Combinatorics

Combinatorics is the study of combinations of elements – in particular, the
number(s) of ways of building lists (sets) of length (size) k out of a set of n
possible elements. We have four cases to consider, depending on:
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1. whether or not we care in which order items are selected, and

2. whether or not we can re-use previously selected items.

−Reuse +Reuse

+Order (n)k nk

−Order

(
n
k

) (
n + k − 1

k

)

Where:

nk =

k factors
︷ ︸︸ ︷
n · n · . . . · n

n! = n · (n − 1) · . . . · 1

(n)k = n · (n − 1) · . . . · (n − k + 1) =
n!

(n − k)!
(

n
k

)

=
(n)k

k!
=

n!

(n − k)!k!

For proofs, see Krenn and Samuelsson (1997, Section 1.2.7).

Example 9 (Lotto) For a lottery game in which 6 balls are selected from a
pool of balls uniquely numbered from 1 to 49, where the balls are not replaced
after having been drawn and where order does not matter, there are

(
49
6

)
=

13, 983, 816 possible results.

1.7 Some Common Probability Distributions

• In practical applications, we often have no prior knowledge of the proba-
bility distribution(s) for the events we wish to model.

• Although the relative frequency n(A)
N can serve as an estimate for P (A),

such estimates become quite cumbersome when a large sample space (i.e.
natural language data) is involved.

• Instead, we can often use prior knowledge of the domain we wish to model
to assign our phenomena to one of a number of common families of dis-
tributions, and formulating our model in terms of the general properties
(“parameters”) of the distribution family.

• Caveat: such a technique can go horribly, horribly wrong if we choose the
wrong underlying distribution, but it’s pretty darned handy nonetheless.
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1.7.1 Bernoulli Distribution

A stochastic experiment with exactly two possible outcomes is called a Bernoulli
trial, and is described by a parametric distribution known as a Bernoulli dis-
tribution, which is completely specified by the probability p of one of the two
possible outcomes. Random variables for Bernoulli trials are typically mapped
to the values 0 (“failed trial”) and 1 (“successful trial”).

For a random variable X and a probability p, we write X ∼ b(1, p) to indicate
that X has a Bernoulli distribution with pX(1) = p. For such a random variable,
the following properties hold:

Success Probability: b(1; 1, p) = pX(1) = p
Failure Probability: b(0; 1, p) = pX(0) = 1 − p

Mean: E(b(1, p)) = E(X) = p
Variance: V ar(b(1, p)) = V ar(X) = p · (1 − p)

Example 10 (Fair Coin) A random variable X = {heads 7→ 1, tails 7→ 0}
describing a single coin toss has a Bernoulli distribution:

X ∼ b(1, P (heads))

Example 11 (Lotto) Let X be a random variable describing a lottery game
as in Example 9, where for a 6-number ticket t = {x1, x2, x3, x4, x5, x6}, let
X(t) = 1 iff all of the numbers xi are drawn, and let X(t) = 0 otherwise. If
the lottery game is fair, then X has a Bernoulli distribution with probability

1
13,983,816 ≈ 7.15 × 10−8:

X ∼ b (1, 0.0000000715)

1.7.2 Binomial Distribution

A finite series of Bernoulli trials in which each trial is independent from all other
trials is described by a Binomial distribution, and is completely specified by the
number n of trials in the series and the probability p of success in any trial.

For a random variable X, a natural number n, and a probability p, we write
X ∼ b(n, p) to indicate that X has a binomial distribution over n independent
trials with pX(1) = p in any of those trials, and for a natural number k ≤ n, we
write b(k;n, p) to indicate the probability of k successes in n such trials – but
how do we find it?

• Given an X ∼ b(n, p) and a k ≤ n, the probability of any specific (ordered)
sequence containing k successes and n − k failures is pk(1 − p)n−k, since
the individual trials are independent.
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• We are interested only in the number k of successful trials, ignoring the
order in which they occur, so we must count every sequence containing k
successes as a single event.

• There are exactly
(
n
k

)
such sequences – this is just the number of ways of

picking k successful trial indices from a “bag” of n trial indices without
regard to order and without re-using previously selected indices.

Therefore, for a random variable X ∼ b(n, p), the following properties hold:

k-Success: b(k;n, p) =

(
n
k

)

pk(1 − p)n−k

Mean: E(X ∼ b(n, p)) =
n∑

k=0

k · b(k;n, p)

= np

Variance: V ar(X ∼ b(n, p)) =
n∑

k=0

(k − np)2 · b(k;n, p)

= np(1 − p)

Example 12 (2 Fair Coins) Let X be a random variable modelling the toss
of 2 fair coins which maps each experiment to the number of coins which come
up “heads”. Then, X has a binomial distribution:

X ∼ b(2, 0.5)

b(0; 2, 0.5) = 1 · 0.50 · (1 − 0.5)2−0 = 0.25
b(1; 2, 0.5) = 1 · 0.51 · (1 − 0.5)2−1 = 0.5
b(2; 2, 0.5) = 1 · 0.52 · (1 − 0.5)2−2 = 0.25

E(X) = 2 · 0.5 = 1
V ar(X) = 2 · 0.5 · (1 − 0.5) = 0.5

Example 13 (Lotto) Let X be a random variable describing a sequence of fair
lottery drawings as in Example 9 whose values are the number of full (6-position)
matches (“winning tickets”) in the sequence of lottery drawings. Suppose that
Lotto drawings occur weekly and that X describes Lotto participation once a
week since the birth of Socrates (ca. 470 BC), or roughly 128648 consecutive
weeks. Then, X has a binomial distribution:

X ∼ b(n = 128648, p ≈ 7.15 × 10−8)

b(1;n, p) = E(X) ≈ 128648 · 7.15 × 10−8 ≈ 0.0092
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1.7.3 Normal (Gaussian) Distribution

The Normal or Gaussian distribution – courtesy of Johann Carl Friedrich Gauss
– is a continuous distribution, and is often used as an approximation for the bi-
nomial distribution when n is large (since computation of the factorials involved
in the binomial coefficient is highly problematic in these cases).

Definition 8 (Normal Distribution) Let X be a continuous random vari-
able with mean µ and variance σ2. X is said to be normally distributed, written
X ∼ N(µ, σ) iff it is characterized by the probability density function:

Nµ,σ(x) =
1

σ
√

2π
e−(x−µ)2/(2σ2)

Roughly speaking, when dealing with continuous distributions, pointwise prob-
abilities are replaced with interval probabilities, and summation in the formulae
for discrete distributions are replaced with integrals.

1.8 Parameter Estimation

• Often, we can’t observe probabilities P (X) directly, but we can perform a
series of experiments and tally the observed values ~x of a random variable
X.

• If we can additionally sort our phenomena into a parameterized model,
we can express the distribution function for X as conditioned on the (un-
known) parameters θ ∈ Ξ of that model: P (x) = P (x|θ). For a binomial
distribution X ∼ b(n, p), θ = p.

• Given an observed set of values and an expression of their dependance
on one or more model parameters, we can attempt to find the model
parameters which best account for the observed data.

• Having thus estimated a model’s parameters, we can effectively fix the
(imperfect) model, using it to predict the outcomes of further experiments.

1.8.1 Maximum Likelihood Estimation

Definition 9 (Likelihood Function) A likelihood function for parameters
θ ∈ Ξ and an observed sample X = x of a random variable X is a function
L : Ξ → �

which can be expressed as a (linear function of a) conditional prob-
ability function1 with its first argument held fixed to the observation x:

L(θ) = aP (X = x|θ) + b a, b ∈ �

1Despite the formulation of likelihood functions in terms of probabilities, likelihood func-

tions are not in general probability functions themselves.
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Example 14 (Likelihood: Coin Toss) A coin is tossed 10 times, resulting
in 8 heads and 2 tails. By prior knowledge, we assume that the trials are
independent, and thus a random variable X modelling the process has a binomial
distribution: X ∼ b(10, p). The model’s parameters θ are given by p, so Ξ =
[0, 1] and:

L(p) =

(
10
8

)

p8(1 − p)2

Definition 10 (Maximum Likelihood) Given a likelihood function L : Ξ →
[0, 1] the parameters θ ∈ Ξ which maximize L(θ) are called the maximum like-
lihood estimate for θ:

MLE(θ) = arg max
θ

L(θ)

Example 15 (MLE: Coin Toss) Continuing Example 14, we find (unsur-
prisingly) that:

MLE(p) = arg max
p

(
10
8

)

p8(1 − p)2 = 0.8

1.8.2 Bayesian Statistics

Parameter estimation in Bayesian statistics takes into account prior belief in
the acceptability of model parameters θ. Formally, this involves an additional
probability distribution on Ξ and the application of Bayes’ law in order to revise
prior beliefs in the face of new evidence, thus computing a posterior distribution:

P (θ|x) =
P (θ)P (x|θ)

P (x)

Although the prior probability P (x) of x is unknown, we can ignore it if we just
want to find the parameters which maximize the posterior distribution – that
is, if we want to compute a new “best” value for θ given x:

MAP (θ) = arg max
θ

P (θ|x)

Given our (possibly new) parameter estimate θ, we can turn our attention to
new data. Iteration of this process is known as Bayesian updating.

Example 16 (Bayesian Updating: Coin Toss) Consider the coin toss ex-
periment from Example 14. Suppose our prior belief is modelled by by the
function G :

� → �
, where:

G(p) =

{
6p(1 − p) if 0 ≤ p ≤ 1
0 otherwise

11
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Then for the observed sequence of 8 heads and 2 tails, we have:

P (p|x) =
P (p)P (x|p)

P (x)

=
p8(1 − p)2 · 6p(1 − p)

P (x)

=
6p9(1 − p)3

P (x)

so that:

MAP (p) = arg max
p

P (p|x)

= arg max
p

6p9(1 − p)3

P (x)

= 0.75
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