
Practical Perl Programming
Universität Potsdam, Institut für Linguistik

Wintersemester 2004-2005

Bryan Jurish

moocow@ling.uni-potsdam.de

mailto:moocow@ling.uni-potsdam.de

CONTENTS WS 2004-05 / Jurish

Contents

1 Course Syllabus 5

2 Administrivia 6

2.1 Prerequisites . 6

2.2 New Versions of This Document 6

2.3 Questions . 6

2.4 Grading Policies . 6

2.4.1 Blocks . 6

2.4.2 Problems . 6

2.4.3 Points . 6

2.4.4 Deadlines . 7

2.4.5 Revisions . 7

2.4.6 Platforms . 7

2.4.7 Delivery . 7

2.4.8 Format . 7

2.4.9 Collective Work . 8

2.5 Acquiring Perl . 8

2.6 Perl Resources . 8

2.7 Shameless Plugs . 9

2.7.1 Copying . 9

2.7.2 FAQs and Factoids . 9

2.7.3 Uses of Perl . 10

3 The Mollusc of Your Choice 11

3.1 The Very Basics: hello.perl . 11

3.1.1 Running perl . 11

3.1.2 Compiling vs. Interpreting 12

3.1.3 Program Elements . 12

3.2 Scalars: hello-name . 13

3.2.1 Scalar Variables . 13

3.2.2 Program Elements . 13

3.3 Lists and Arrays: hello-folks . 14

3.3.1 Lists and Arrays . 14

1

WS 2004-05 / Jurish CONTENTS

3.3.2 Basic Array Operations 15

3.3.3 Program Elements . 16

3.3.4 Black Magic . 17

3.4 Hashes: hello-dialect . 18

3.4.1 Hashes and Associative Arrays 18

3.4.2 Basic Hash Operations . 20

3.4.3 Program Elements . 20

3.5 Filehandles: hello-file.perl . 21

3.5.1 Streams and Filehandles 21

3.5.2 Basic Filehandle Operations 22

3.5.3 Program Elements . 22

3.6 Subroutines: hello-sub . 23

3.6.1 Subroutines and Other Animals 25

3.6.2 Program Elements . 25

4 The Gory Details 27

4.1 Perl Syntax . 27

4.1.1 Comments and Whitespace 27

4.1.2 Terms and Values . 27

4.1.3 Expressions . 28

4.1.4 Statements . 28

4.1.5 Blocks . 29

4.1.6 Declarations . 29

4.1.7 Control Structures . 29

4.2 Perl Datatypes . 30

4.2.1 Scalars . 30

4.2.2 Context . 34

4.2.3 Lists and Arrays . 35

4.2.4 Hashes . 37

4.2.5 Subs and Code . 39

4.2.6 Typeglobs and Filehandles 39

4.2.7 Regular Expression Patterns 40

4.2.8 References . 40

4.3 Perl Control Structures . 41

2

CONTENTS WS 2004-05 / Jurish

4.3.1 Conditionals . 41

4.3.2 Loops . 42

4.3.3 Jumps . 46

4.3.4 Subroutines . 46

4.3.5 Declarators and Scope . 48

4.3.6 Errors and Warnings . 49

4.3.7 Dynamic Evaluation . 50

4.3.8 External Code . 51

4.4 Perl I/O . 53

4.4.1 Filehandles . 53

4.4.2 Files . 55

4.4.3 Pipes . 58

4.4.4 IO::File . 59

4.4.5 Sockets . 61

4.5 Perl Regular Expressions . 64

4.5.1 Friends and Relations . 64

4.5.2 Common Uses . 64

4.5.3 Single-Character Patterns 65

4.5.4 Multi-Character Patterns 66

4.5.5 Grouping Patterns . 68

4.5.6 Matching Miscellany . 69

4.6 Perl References . 72

4.6.1 What is a Reference? . 72

4.6.2 Why References? . 72

4.6.3 Symbolic References . 73

4.6.4 Hard References . 73

4.6.5 Reference Counts and Memory Management 77

4.6.6 Stringification . 79

4.7 Perl Modules etc. 81

4.7.1 What’s it All About? . 81

4.7.2 Packages . 81

4.7.3 Modules . 83

4.7.4 Objects . 85

3

WS 2004-05 / Jurish PROGRAMS

5 Miscellaneous Bits 89

5.1 Efficiency . 89

5.1.1 Time Efficiency . 89

5.1.2 Space Efficiency . 90

5.1.3 Programmer Efficiency . 91

5.1.4 Maintainer Efficiency . 91

5.1.5 Porter Efficiency . 92

5.1.6 User Efficiency . 93

5.2 Coding With Style . 94

5.2.1 Indentation . 94

5.2.2 Blank Lines . 95

5.2.3 Comments . 95

5.3 When Things Go Wrong . 97

5.3.1 Grokking the Diagnostics 97

5.3.2 Common Warnings . 97

5.3.3 Perl Errors . 98

5.3.4 The Perl Debugger . 99

A A Brief Review of Set Theory 100

B A Brief Review of Tree Domains 100

References 103

Programs

3.1 hello.perl . 11
3.2 hello-name.perl . 13
3.3 hello-folks.perl . 15
3.4 hello-folks2.perl . 18
3.5 hello-dialect.perl . 19
3.6 hello-file.perl . 21
3.7 hello-sub.perl . 24

4

WS 2004-05 / Jurish

1 Course Syllabus

• Week 1 (14.10.) Administrivia
Topics: prerequisites, grading policies, acquiring perl, perl resources, and
shameless plugs.

• Weeks 2-4 (21.10. – 04.11.) The Mollusc of Your Choice
Topics: more shameless plugs with an eensy bit of content, anatomy of a
perl script. Reading: Camel, ch. 1.

04.11.: Assignment Block 1 release

• Weeks 5-10 (11.11. – 16.12.) Gory Details

– Perl Datatypes
Topics: scalars, arrays, hashes, references, and maybe even globs.

– Perl Control Structures
Topics: expressions, statements, blocks, conditionals, loops, subrou-
tines, declarations.

– Perl I/O
Topics: files, pipes, sockets, IO::File.

– Perl Regular Expressions
Topics: regex operators, modifiers, character classes, anchors, . . .

Reading: Camel, ch. 2.

18.11.: Assignment Block 1 due
16.12.: Assignment Block 2 release

• Weeks 11-12 (06.01. – 13.01.) Perl References
Topics: hard- vs. soft-refs, (anonymous) reference creation, dereferencing,
reference counting. Reading: Camel, ch. 4.

06.01.: No class
13.01.: Assignment Block 2 due

• Weeks 13-15 (20.01. – 03.02.) Perl Modules
Topics: Packages, modules, objects. Reading: Camel, ch. 5.

03.02.: Assignment Block 3 release
24.02.: Assignment Block 3 due

5

WS 2004-05 / Jurish 2 ADMINISTRIVIA

2 Administrivia

2.1 Prerequisites

• Experience with at least one programming language, preferably of the
imperative syntax variety (i.e. C(++), PASCAL), and/or

• Experience with at least one command-line interpreter or “shell” (i.e.
bash, (t)csh, DOS command.com).

2.2 New Versions of This Document

The most current version of this document should always be available in a
number of formats over the internet, at:

http://www.ling.uni-potsdam.de/˜moocow/class/perl

2.3 Questions

Questions, comments, flames, and rotten fruit should be addressed to me:
moocow@ling.uni-potsdam.de, and should contain the word “Perl” in the “Sub-
ject” header. I repeat, e-mails to me regarding this course should
contain the word “Perl” in the “Subject” header. Otherwise,
they run the risk drowing in a sea of spam.

2.4 Grading Policies

Only students interested in acquiring a Leistungschein need concern themselves
with the grading policies described below.

2.4.1 Blocks

3 assignment-blocks, more or less equally spaced throughout the semester.

2.4.2 Problems

• 3 problems given per block.

• each student may attempt to solve at most 2 problems per block.

2.4.3 Points

Each problem will be assigned a value in “points”, which depends on the
assignment-block of which that problem is a member:

6

http://www.ling.uni-potsdam.de/~moocow/class/perl

2.4 Grading Policies WS 2004-05 / Jurish

Block Points per Maximum
Number Problem Points

1 8 16
2 16 32
3 32 64

Total – 112

2.4.4 Deadlines

• Solutions for each assignment block are due exactly two weeks from the
date that block was released.

• 1

8
of the possible points for each problem will be deducted from the grade

for each day past the deadline a late assignment is received.

2.4.5 Revisions

• Each student not receiving the highest possible number of points for his
or her solution to a given problem will be given exactly 1 chance to revise
that solution. Revisions are due no later than one week after reception of
the graded initial solution.

• Choosing to revise an initial solution cannot lower a student’s grade.

2.4.6 Platforms

Students are allowed and encouraged to write their programs on the computer
of their choice. Solutions will be evaluated on a linux/x86 machine running perl
version 5.8.4 – a good test machine in the Institute is helios.

2.4.7 Delivery

The solution to each problem should be sent by e-mail (one mail per prob-

lem) to me: moocow@ling.uni-potsdam.de

Solution e-mails should contain the word “Perl” in the “Subject:” header (see
Section 2.3).

2.4.8 Format

Each solution program should contain a comment near the top of the file con-
taining the student’s email address, immatriculation number, and the number
of the problem.

7

mailto:moocow@ling.uni-potsdam.de

WS 2004-05 / Jurish 2 ADMINISTRIVIA

2.4.9 Collective Work

Students choosing to work together may do so, provided that all students con-
tributing to the solution of a problem turn in exactly one collective solution to
that problem. Each student contributing to a solution submitted collectively
by N > 1 students will receive 3

2N
of the total points awarded to that solution.

Collective solutions which are not declared as such are hereafter referred to as
“cheating” – students contributing to a cheating solution will receive 0 (zero)
points for that solution, and forfeit the right to revision for the corresponding
assignment block.

2.5 Acquiring Perl

Perl itself is available free of charge for many platforms, including (but not
limited to) Linux, BSD, Solaris, HP-UX, VMS, MS-DOS, MS-Windows (3.x,
9x, 2000, XP), MacOS, . . .

The official distribution site for perl itself is CPAN, the Comprehensive Perl
Archive Network. Binary ports for various operating systems and architectures
are available at:

http://www.cpan.org/ports

For users of MS-Windoof, I reccommend the perl distributed as part of the
cygwin project,

http://www.cygwin.com

The most popular Perl for Windoof is probably “ActivePerl”, available in binary
form from:

http://www.activestate.com/ActivePerl

. . . but any perl will suffice, as long as your programs run under perl 5.8.4 on a
linux/x86 machine.

2.6 Perl Resources

Many Perl-related resources are available on the internet. Some of them are:

• Perl Online Documentation
Your Perl should have come with a good deal of online documentation,
hereafter referred to as “manpages”. See the perltoc manpage for a list
of the available topics.

• CPAN, the Comprehensive Perl Archive Network
The definitive source for Perl itself, the standard library of Perl Modules,
and user-contributed perl modules.
URL: http://www.cpan.org

8

http://www.cpan.org/ports
http://www.cygwin.com
http://www.activestate.com/ActivePerl
http://www.cpan.org

2.7 Shameless Plugs WS 2004-05 / Jurish

• learn.perl.org
Contains much useful information for beginning perl programmers.
URL: http://learn.perl.org

• perldoc.com
When in doubt, RTFM1: most of the documentation available here should
have shipped with your perl distribution.
URL: http://www.perldoc.com/perl5.8.4

• Perl Mongers
Contains a number of handy links.
URL: http://www.perl.org

• Perl Mailing Lists
Here, one can subscribe to and/or view the archives of the many perl-
specific mailing lists.
URL: http://lists.perl.org

• perl.com
A useful site run by the publishing house O’Reilly and Associates, the
employers of Perl’s author, Larry Wall.
URL: http://www.perl.com

2.7 Shameless Plugs

2.7.1 Copying

Perl is freely available under the terms of the Free Software Foundation’s stan-
dard GNU public license (http://www.gnu.org), or optionally under the terms
of the somewhat less restrictive Perl Artistic License. This is a Good Thing.

2.7.2 FAQs and Factoids

• Q: What does perl stand for?
A: Choose one of the following:

– Practical Extraction and Report Language

– Pathologically Eclectic Rubbish Lister

. . ., or don’t.

• Q: Who wrote Perl?
A: The linguist, system administrator, and All-Around Nifty Guy Larry
Wall wrote Perl (to solve a problem that awk couldn’t handle.)

• Q: How old is Perl?
A: Perl-1.0 was first released to the usenet newsgroup comp.sources on 17
October, 1987.

• Q: What the heck is Perl good for anyways? A: Read on . . .

1Read The Friendly Manual

9

http://learn.perl.org
http://www.perldoc.com/perl5.8.4
http://www.perl.org
http://lists.perl.org
http://www.perl.com
http://www.gnu.org

WS 2004-05 / Jurish 2 ADMINISTRIVIA

2.7.3 Uses of Perl

• “Perl is a language for getting your job done. . . . Perl is designed to make
the easy jobs easy, without making the hard jobs impossible.”
[WCS96, p. ix]

• Easy Jobs

– Reading
Finding and reading files, directories, the output of other programs
(pipes), or other computers on a network (sockets) and turning that
data into something your program can use.

Also, reading perl programs themselves: Perl’s syntax allows pro-
grammers to write clear code.

– Writing
Writing your program’s data to files, pipes, sockets, creating and
manipulating files and directories, and generating human-readable
reports.

Also, writing a Perl program itself: Perl’s flexibility allows program-
mers many ways to accomplish any given task.

– Arithmetic
Not just numeric operations, but the manipulation of, conversion
between, and agglomeration of basic data structures such as strings,
lists, and associative arrays (“hashes”).

• Harder Jobs

– Social Interaction
Generating dynamic program code, integration of Perl interpreters
into external applications and programs.

– Literature
Implementing a full-scale all-singing all-dancing slicing dicing paint-
your-house opus for (insert function here).

– Engineering
Calling an arbitrary C function, (via the XS sublayer, BTSOTD2),
tweaking perl itself, . . .

2Beyond the Scope of This Document

10

WS 2004-05 / Jurish

3 The Mollusc of Your Choice

3.1 The Very Basics: hello.perl

See code in Program 3.1 (hello.perl).

Program 3.1: hello.perl

#!/usr/bin/perl -w

print "Hello, Perl.\n";

3.1.1 Running perl

• UNIX: the “shebang” line

– For interpreted scripts, the first line of a file has a special format:

#!/full/path/to/interpreter arg1 ... argN

– Set executable file permission bit:

bash$ chmod u+rx hello.perl

– Run the program3

bash$./hello.perl

• Everywhere: call perl “by hand”

C:> perl -w hello.perl

. . . where “C:>” represents the shell prompt of some arbitrary hypothetical
non-UNIX operating system.

• perl Options
-w print verbose warnings to the terminal
-d run in debugging mode (see Section 5.3)
. . . and many, many more.

• More Information
See the perlrun(1) manpage for more options and details on your own
particular flavor of Perl.

In most cases, Perl documentation should be available via the program
perldoc, which is usually distributed with Perl itself:

bash$ perldoc perlrun

3 The UNIX shell prompt is displayed here and forever after as “bash$”.

11

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlrun.html

WS 2004-05 / Jurish 3 THE MOLLUSC OF YOUR CHOICE

3.1.2 Compiling vs. Interpreting

First, some working definitions:

• Compile (verb)
To translate source code (i.e. of a program) into a binary machine-readable
format (“object code”) in preparation for the execution or further linking
of that code.

Commonly compiled languages: C, C++, FORTRAN.

• Interpret (verb)
To incrementally parse and execute program code.

Commonly interpreted languages: LISP, Scheme, sh, DOS Batch.

So what does Perl do? Both!

1. Compile

• Good: detects common errors on program startup.

• Good: compiled code executes faster.

• Not so good: program startup is slow.

2. Interpret

• Good: no explicit compilation required when source code changes.

• Good: no object code taking up extra disk space.

• Not so good: interpreter required to run programs.

3.1.3 Program Elements

• print

A builtin perl subroutine4 which causes its argument(s) to be printed to
the standard output (usually the user’s terminal).

• "Hello, Perl.\n"

A literal double-quoted string. The sequence “\n” translates to a newline
character.

• ()

Subroutine arguments may or may not be enclosed by round parentheses.
In some more complex cases, parentheses are required.

• ;

Perl programs are just sequences of statements. Each statement5 is ter-
minated by a semicolon.

• whitespace
Whitespace6 is ignored everywhere except inside strings.

4 Perl’s “subroutines” are also known as “functions”, or sometimes “procedures”.
5 Actually, just simple statements – see the perlsyn(1) manpage for details.
6 Whitespace includes spaces, TABs, newlines, carriage returns, and form-feeds.

12

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlsyn.html

3.2 Scalars: hello-name WS 2004-05 / Jurish

3.2 Scalars: hello-name

What if we want to greet someone by name? See code in Program 3.2 (hello-
name.perl).

Program 3.2: hello-name.perl

#!/usr/bin/perl -w

print ’Who are you? ’;

$name = <STDIN>; # read from standard input

chomp ($name); # remove that pesky newline

print "Hello, $name!\n";

3.2.1 Scalar Variables

• Variables
A variable is just a placeholder for some program data (the variable’s
value) which has a symbolic name (the variable’s identifier or name).

• Scalar Values
A scalar variable holds a single elementary datum (a scalar value), similar
to the “atoms” of PROLOG or LISP. Valid scalar values include strings,
numbers, and references.

• Perl Scalar Variables
Scalar variables in Perl (“scalars” for short) are prefixed with a dollar-sign
($). Perl variable names must begin with a letter or underscore, and may
be followed by up to about 250 letters, digits, or underscores. Examples:

$_

$x

$var42

$some_long_variable_name

Unlike more restrictive languages such as C or PASCAL, Perl’s variables
spring into existence as needed.

See the perldata(1) manpage for details.

3.2.2 Program Elements

• ’Who are you? ’

A single-quoted literal string. No interpolation of variables or backslash-
escapes is performed on single-quoted strings.

• $name

A scalar variable whose identifier is “name”.

13

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perldata.html

WS 2004-05 / Jurish 3 THE MOLLUSC OF YOUR CHOICE

• STDIN

The standard input stream. One of the three builtin filehandles7, STDIN
usually gets its data from the user’s keyboard.

• <STDIN>

Line input operator: reads and returns (a single line of) data from a
filehandle (here STDIN), including the terminating newline.

If not used in an assignment (see below), implicitly assigns to the default
scalar variable “$_”.

• $name = <STDIN>

An instance of variable-assignment,

VAR = EXPR

The variable VAR on the left-hand side of the “=” is assigned the result
of evaluating the expression EXPR on the right-hand side; here, the scalar
$name gets as its value the next string read from STDIN8.

• chomp($name)

A builtin Perl subroutine which removes the trailing newline character (if
any) from its argument, here $name.

If no argument is given, chomp() uses the variable “$_”.

• "Hello, $name!\n"

A double-quoted interpolated string. Variables will be replaced by their
respective values in this string when it is evaluated.

• # read from standard input

A comment. Perl comments begin with a hash-mark (#), and continue
until the end of the line.

3.3 Lists and Arrays: hello-folks

Maybe we want our program to greet more than just one person.

See code in Program 3.3 (hello-folks.perl).

3.3.1 Lists and Arrays

• List
A list is just an ordered (possibly empty) sequence of data (the elements
of the list).

• Array
Conceptually almost identical to a “list”, arrays typically allow efficient
(constant time) access to their elements.

7 The other two builtin filehandles are STDOUT and STDERR, and only allow output.
8 Technically, the left-hand-side of an assignment must be an lvalue.

14

3.3 Lists and Arrays: hello-folks WS 2004-05 / Jurish

Program 3.3: hello-folks.perl

#!/usr/bin/perl -w

@folks = (’moocow’, ’Bryan’); # literal list

print ’Who is here? ’; # no interpolation

while (defined($name = <STDIN>)) {

chomp($name);

push (@folks, $name); # add name to array

print ’Who else is here? ’;

}

print "\n";

foreach $name (sort(@folks)) { # alphabetical sort

print ("Hello, ", $name, "!\n"); # print a list

}

• Perl Lists
Perl lists may contain only scalar values as elements9. For Perl, a list is
just a type of value10, which provides an evaluation context11.

• Perl Arrays
A Perl array is a variable whose value is a list. Perl array variables are
prefixed with an “at-sign” (@). Examples:

@_

@a

@array42

@some_long_array_name

As with scalars, Perl array variables pop into existence as needed. See
the perldata(1) manpage for details.

3.3.2 Basic Array Operations

• Array Indexing Operations

– $array[$n]

Returns the $nth element of the array @array, where $array[0] is
the first element in @array.

You can use this syntax to assign to a list element, too:

$array[$n] = $value;

– $#array

Returns the numeric index of the last element of the array @array.

9 Recursive nesting of data structures is only possible in Perl by using references.
10 Other basic value types include scalars, hashes, and (in a polymorphic sort of way)

typeglobs.
11 Other evaluation contexts include scalar context and boolean context.

15

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perldata.html

WS 2004-05 / Jurish 3 THE MOLLUSC OF YOUR CHOICE

• Stack Operations

– pop ARRAY
Removes and returns a single element from the end of ARRAY.

– push ARRAY, LIST
Adds the elements of LIST to the end of ARRAY.

• Queue Operations

– shift ARRAY
Removes and returns a single element from the front of ARRAY.

– unshift ARRAY, LIST
Adds the elements of LIST to the front of ARRAY.

• Conversion Operations

– split REGEX, SCALAR
Returns a list resulting from splitting up the string SCALAR wher-
ever the regular expression REGEX matches.

– join SEP, LIST
Returns a string built by concatenating the string-representations of
the elements of LIST, separated by the string SEP.

3.3.3 Program Elements

• (’moocow’, ’Bryan’)

A literal list. Commas (,) are used to separate the elements of a Perl list,
and the list itself may be optionally enclosed by round parentheses12.

• @folks

An array variable whose identifier is “folks”.

• @folks = (’moocow’, ’Bryan’)

Assignment to an array variable – here, the variable @folks gets as its
value the list consisting of the strings "moocow" and "Bryan", in that
order.

• while ($name = <STDIN>) { ... }

An instance of the simple loop construct

while (EXPR) BLOCK

which behaves as follows:

1. Evaluate the expression EXPR – here, $name = <STDIN>.

2. If EXPR evaluates to a true value, then evaluate the sequence of
statements in BLOCK. and then goto Step 1.

3. Otherwise, if EXPR evaluates to a false value, then exit the loop
and continue program execution with the first statement following
BLOCK.

12 In many cases, round parentheses are required to resolve precedence conflicts.

16

3.3 Lists and Arrays: hello-folks WS 2004-05 / Jurish

This loop works because:

– For Perl, a “false value” is one of the following:

∗ The empty string, ’’.

∗ The number 0 (zero).

∗ The undefined value, undef.

– The value of an assignment is the value assigned – here, the line read
by <STDIN>.

– On end-of-file13, the <> operator returns the undefined value, undef.

– If there is still data to be read from STDIN, since the terminating new-
line is included in the value that the <STDIN> returns, the expression
$name = <STDIN> will never evaluate to a truly empty string.

• push(@folks, $name)

A builtin Perl function whose first argument (here, @folks) must be an
array, and which adds (the values of) all remaining arguments (here, just
$name) in order onto the end of that array.

• sort(@folks)

sort LIST

A builtin Perl function which returns the elements of its argument (a list,
here the contents of the array @folks) sorted in alphabetical order.

• foreach $name (sort(@folks)) { ... }

An instance of the loop construct:

foreach VAR (LIST) BLOCK

which sets the scalar variable VAR to each element of the list LIST in
turn, evaluating BLOCK once for each element.

• ("Hello, ", $name, "!\n")

Yet another literal list.

• print("Hello, ", $name, "!\n")

Shows that you can print() a list just as easily as a scalar.

3.3.4 Black Magic

An elegant but somewhat cryptic variant of the above program (without prompts):
See code in Program 3.4 (hello-folks2.perl).

Things we haven’t seen yet:

• map BLOCK LIST
Returns the result of mapping the scalar $_ to each element of LIST in
turn and evaluating BLOCK for that element.

13 On UNIX systems, end-of-file can be input on the keyboard by typing “Ctrl-d”. On
DOS-based systems, the end-of-file character is “Ctrl-z”.

17

WS 2004-05 / Jurish 3 THE MOLLUSC OF YOUR CHOICE

Program 3.4: hello-folks2.perl

#!/usr/bin/perl -w

print # print a list

map { # resulting from mapping $_

chomp; # ... and chomping it (implicit $_)

"Hello, $_!\n"; # ... to a greeting string

} sort(<STDIN>); # from each input line (in alphabetical order)

• BLOCK values
The value of a block is the value of the last statement in the block.

• <>

The line-input operator <> without a filehandle reads from all files specified
on the command-line (as recorded in the array @ARGV), or from standard
input if no files were specified. See the perlop(1) manpage for details.

• <> in list context
In list context, the line-input operator (with or without a specified file-
handle) returns a list of all remaining lines in the filehandle(s) from which
it reads.

3.4 Hashes: hello-dialect

Anyone care for a multilingual greeting program? See code in Program 3.5
(hello-dialect.perl).

3.4.1 Hashes and Associative Arrays

• Associative Arrays
An associative array is an unordered set of values, each of which is indexed
(or keyed) by some key.

• Hash Tables
A hash table is a low-level data structure which allows a scalable and
efficient implementation of associative arrays.

• Perl Hashes
Perl hashes are variables whose values are associative arrays14. Keys of a
perl hash must be strings, and each key has exactly one scalar value per
hash. Perl hash variables are prefixed with a percent-sign (%). Examples:

%_

%h

%hash42

%some_long_hash_name

14 Internally, Perl hashes are indeed implemented as hash tables.

18

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlop.html

3.4 Hashes: hello-dialect WS 2004-05 / Jurish

Program 3.5: hello-dialect.perl

#!/usr/bin/perl -w

literal hash of greeting-strings, keyed by dialect

%greetings = (’english’ => ’Hello!’, ’deutsch’ => ’Tag!’);

print "What is your favorite dialect? ";

while ($dialect = <STDIN>) {

chomp ($dialect);

if (exists($greetings{$dialect})) { # existence check

print $greetings{$dialect}, "\n"; # hash lookup

}

else {

print ("Sorry, I don’t speak ’$dialect’ ",

" -- how should I greet you? ");

$greeting = <STDIN>;

chomp ($greeting);

$greetings{$dialect} = $greeting; # hash assignmentg

print "Well, then -- ", $greeting, "\n";

}

print "What is your next favorite dialect? ";

}

Summarize what we know

print "\n\nI now know the following greetings:\n";

foreach $dialect (keys(%greetings)) { # hash iteration

print "\t $dialect:\t $greetings{$dialect}\n";

}

19

WS 2004-05 / Jurish 3 THE MOLLUSC OF YOUR CHOICE

Yup, you guessed it – Perl’s hash variables come to be as they are needed.
See the perldata(1) manpage for details.

Hashes are one of the most useful (and most common) elements of Perl. Get
used to them.

3.4.2 Basic Hash Operations

• $hash{$key}

Returns the value associated with the string value of $key in the hash
%hash.

You can use this syntax to assign the value for $key in %hash, too:

$hash{$key} = $value;

• keys(%hash)

Returns an unordered list of all the keys of the hash %hash.

3.4.3 Program Elements

• (’english’ => ’Hello!’, ’deutsch’ => ’Tag!’)

Actually just a list, the operator => can be used to associate hash-keys
(on the left of the =>) with their values (on the right).

• %greetings = (’english’ => ’Hello!’, ’deutsch’ => ’Tag!’)

Literal hash-assignment. The hash %greetings associates the key-string
“english” with the scalar value “Hello!” (also a string), and the key-
string “deutsch” with the scalar value “Tag!” (yet another string).

• exists($greetings{$dialect})

A builtin perl function which returns a true value iff15 the hash16 variable
%greetings contains a value for the key $dialect.

• if (exists($greetings{$dialect})) { ... } else { ... }

An instance of the conditional construct:

if (| EXPR) BLOCK else BLOCK

which first evaluates EXPR, evaluating the first BLOCK if EXPR returns
a true value, otherwise evaluating the second BLOCK.

Other variations of the conditional construct include:

if (EXPR) BLOCK

if (EXPR) BLOCK elsif (EXPR) BLOCK . . . else

BLOCK

• keys(%greetings)

Returns a list containing all the keys of the hash %greetings.

15“If and only if”
16 This works for arrays, too: exists($array[$index])

20

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perldata.html

3.5 Filehandles: hello-file.perl WS 2004-05 / Jurish

• "\t $dialect:\t $greetings{$dialect}\n"

Yet another double-quoted string literal. The hash-indexing operation
$greetings{$dialect}will be replaced by the value for the key $dialect

in the hash %greetings in this string when it is evaluated – just as the
scalar $dialect will be replaced by its value17.

3.5 Filehandles: hello-file.perl

What if we want to store different greetings for each person we know in a
separate file?

See code in Program 3.6 (hello-file.perl).

Program 3.6: hello-file.perl

#!/usr/bin/perl -w

-- open the greetings file

open(GREETINGS, "<greetings.txt")

or die("$0: could not open ’greetings.txt’: $!");

-- read in known greetings

while (<GREETINGS>) { # assign to $_

($name,$greeting) = split(/\s+/,$_,2); # ... convert to list

chomp($name,$greeting); # ... chomp() a list

$greetings{$name} = $greeting; # ... associate

}

close(GREETINGS);

-- say hello

print STDERR ’Who are you? ’;

$name = <STDIN>;

chomp($name);

if (exists($greetings{$name})) { # do I know you?

print STDOUT $greetings{$name}, "\n"; # ... use greeting from file

} else {

print STDOUT "Nice to meet you, $name!\n"; # default greeting

}

Here’s the greetings file itself:

See Datafile 3.1 (greetings.txt).

3.5.1 Streams and Filehandles

• Streams
A stream is just a “channel” through which data may (or may not) flow.

17 As you might expect, value interpolation into double-quoted strings works for array-
indexing operations as well.

21

WS 2004-05 / Jurish 3 THE MOLLUSC OF YOUR CHOICE

Datafile 3.1: greetings.txt

moocow Moo!

Bryan Hey now!

Streams come in two basic flavors: input streams and output streams.
Intuitively, you may read data from an input stream, and you may write
data to an output stream.

Typical examples of streams: files, pipes, sockets.

• Perl Filehandles
Perl uses filehandles to represent streams. By convention, filehandle names
are written in upper-case. “Pure” Perl filehandles are always literals – see
the IO::File(3pm) module manpage for one workaround.

• Standard Filehandles
UNIX operating systems (and many others) define the following three
standard streams for each process:

C Name Perl Name Description

stdin STDIN Standard input (keyboard)
stdout STDOUT Standard output (terminal)
stderr STDERR Standard error-output (terminal)

3.5.2 Basic Filehandle Operations

• open(HANDLE,"<$filename")

Open the filehandle HANDLE for reading from the file $filename. Re-
turns a true value iff $filename was opened successfully.

And yes, HANDLE will be created if it did not already exist.

• open(HANDLE,">$filename")

Open HANDLE for writing to the file $filename, overwriting the file’s
previous contents (if any). Returns a true value iff $filename was opened
successfully.

• close(HANDLE) Closes the filehandle HANDLE.

3.5.3 Program Elements

• GREETINGS

A filehandle name.

• open(GREETINGS,"<greetings.txt")

Opens the filehandle GREETINGS for reading from the file greetings.txt.
See Section 3.5.2, above.

22

http://cpan.uwinnipeg.ca/module/IO::File

3.6 Subroutines: hello-sub WS 2004-05 / Jurish

• or

The binary boolean disjunction operator. Perl also accepts C-style boolean
operators. Note that as in C or LISP, Perl performs “short-circuit” evalu-
ations of booleans – this means that in the expression “1 or 0”, only the
“1” gets evaluated, while in the expression “0 or 1”, both terms must be
evaluated.

• $0

A builtin Perl variable whose value is the name of the running program.

• $!

A builtin Perl variable whose value is the operating system’s current error
message – useful when builtin OS-interface functions fail.

• die("$0: could not open ’greetings.txt’: $!")

A builtin Perl function which causes the running program to print an error
message to STDERR and immediately terminate.

• open(...) or die(...)

A common idiom for opening a filehandle safely which causes the program
to exit if the file could not be opened18.

• chomp($name,$greeting)

The builtin function chomp() takes lists, as well.

• close(GREETINGS)

Closes the filehandle GREETINGS. See Section 3.5.2, above.

• STDERR

One of the three standard filehandles, see Section 3.5.1, above.

• print STDERR ’Who are you? ’

An instance of the builtin perl function:

print HANDLE LIST

which prints its argument LIST to the filehandle HANDLE. Note the lack
of a comma between HANDLE and LIST. Up until now, we have seen the
print() function without a HANDLE argument, which implicitly prints
to STDOUT.

3.6 Subroutines: hello-sub

Maybe our Perl script meets a lot of people at a lot of different places, and we
don’t want to have to retype our greeting script from Section 3.2 every time we
see someone we know. We can write a subroutine to do that for us:

See code in Program 3.7 (hello-sub.perl).

18 Why could the file not be opened? Maybe it didn’t exist, maybe the user lacks the
required permissions, maybe the OS is feeling vindictive – in any case, the contents of $!

should give the official reason.

23

WS 2004-05 / Jurish 3 THE MOLLUSC OF YOUR CHOICE

Program 3.7: hello-sub.perl

#!/usr/bin/perl -w

undef = hello($name)

+ subroutine to greet $name abstractly

sub hello {

my $name = shift(@_); # get our first and only argument

print "Hello, $name!\n"; # ... and greet ’em

}

undef = do_something(@what)

+ sets global $name to $what[0]

sub do_something {

print "(doing something: ", @_, ")\n";

$name = $_[0]; # side effect: set $name

}

... meet some folks, assign the variable $name ...

do_something(’whatever’);

hello($name); # greet someone

... meet some other folks, re-assign $name

do_something(’else’);

hello($name); # greet someone else

24

3.6 Subroutines: hello-sub WS 2004-05 / Jurish

3.6.1 Subroutines and Other Animals

• Procedures
A procedure is a chunk of program code that you, the programmer, can
assign a name and save to call later, abstracting over one or more variable
values (parameters, or arguments).

A good example is the builtin Perl procedure print().

• Functions
A function is just like a procedure, but also “returns” a meaningful value19

to its caller – usually, this value is computed from the function’s parame-
ters.

A good example of a function is the builtin Perl function exists().

• Perl subroutines
A Perl subroutine can be either a procedure or a function20 – that is, it
can return a meaningful value, but is not obliged to do so.

Unlike more restrictive languages such as C or PROLOG, Perl subroutines
do not need to pre-declare the number or types of their parameters or
return values.

See the perlsub(1) manpage for details on Perl subroutines.

3.6.2 Program Elements

• sub hello { ... }

An instance of the subroutine definition schema:

sub IDENTIFIER BLOCK

which defines a subroutine named IDENTIFIER – in this case, “hello”
– whose body is BLOCK. All this really means is that you can later
write something like hello($arg1,$arg2) and the code BLOCK will
be evaluated with the special parameter-array variable @_ set to the list
($arg1,$arg2).

• @_

A special array variable which holds the parameters (if any) given in the
call to the currently executing subroutine.

• my $arg

An instance of the declaration schema:

my VAR

The keyword “my” causes its argument variable(s) to be lexically scoped21.
All this basically means is that a new scalar $arg magically pops into ex-
istence when perl evaluates the declaration “my $arg”, which then ceases

19 Or values.
20 Or even an object method, but we’ll get to that later, maybe.
21 As opposed to globally scoped or global variables.

25

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlsub.html

WS 2004-05 / Jurish 3 THE MOLLUSC OF YOUR CHOICE

to exist as soon as evaluation passes out of the smallest block22 contain-
ing that declaration. Usefully, you can assign to a “my” declaration, as in
Program 3.7 (hello-sub.perl):

my $arg = shift(@_);

Which is a common idiom for assigning the first argument of a subroutine
to a lexically scoped scalar variable. Also commonly seen is something
like the following:

my ($arg1,$arg2,$arg3) = @_;

. . . which uses a list-context variant of the “my” keyword to simultaneously
declare and assign three subroutine arguments to three scalar variables.

Other useful idioms include:

my ($req1,@opt) = @_; # required and optional arguments

my ($req1,%kws) = @_; # keyword arguments as a hash

• hello($name)

A call to the subroutine named hello, with the argument $name. Some-
times appears in older23 code as: &hello($name).

22 Or subroutine, or eval(), or package.
23pre Perl-5

26

WS 2004-05 / Jurish

4 The Gory Details

4.1 Perl Syntax

“A Perl script consists of a sequence of declarations and statements.”

the perlsyn(1) manpage

Well, that’s just great, but what the heck are “declarations” and “statements”?
Anyone seeking some working definitions of these animals, read on – but note
that the working definitions in this section are post-hoc generalizations based
on my own personal experience with Perl, and do not give a full and complete
account of Perl’s syntax or semantics.

4.1.1 Comments and Whitespace

Perl comments begin with a “#” (hash-mark) character, and continue to the end
of the line. Example:

This text is ignored by Perl.

Whitespace is ignored just about everywhere by Perl, except in strings, and in
regular program text where it may be used to separate tokens. Whitespace is
also significant in formats.

4.1.2 Terms and Values

Terms come in three typological flavors: scalars, lists, and hashes.

• Simple Terms
A simple term may be either a literal value or variable. Some simple
examples:

Simple Term Type Description

"moo" scalar String literal
42 scalar Integer constant
420.2407 scalar Floating-point constant
$x scalar Scalar variable
@a array Array variable
%h hash Hash variable

• Complex Terms
There are also creatures commonly called complex terms – terms which
contain operators (such as the array-indexing bracket operator “[]”) and
expressions (such as an index).

27

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlsyn.html

WS 2004-05 / Jurish 4 THE GORY DETAILS

Complex Term type Description

$a[0] scalar Array element
$h{moo} scalar Hash element
("moo", "cow") list List literal
@a[0,1] list Array slice
@h{’moo’,’cow’} list Hash slice

• Values
Every term has a semantic value, which is usally what you would expect it
to be. The integer constant 42 for example, has as its value the (abstract,
conceptual) number 42.

• Lvalues
An lvalue is just a term which can appear on the left-hand (receiving) side
of an assignment. Valid Perl lvalues include all types of variable, indexing
operations, and additionally list literals whose every member is an lvalue.
Examples:

Lvalue Type Description

$x scalar Scalar variable
@a array Array variable
%h hash Hash variable
$a[0] scalar Array element
$h{’moo’} scalar Hash element
($x,$y) list List of lvalues

4.1.3 Expressions

An expression is (for practical purposes) any Perl syntactic construct that has
a value. Valid Perl expressions include terms, operator applications, subroutine
calls, and parenthesized expressions. Examples:

Expression Description

$x Term (scalar variable)
$x + $y Addition operation
$x = 42 Assignment operation
foo(’bar’) Subroutine call
($x + 1) Parenthesized expression

4.1.4 Statements

A statement is either an expression whose value we choose to ignore (by use
of the semicolon “;” operator), or a directive to the Perl compiler, known as a
pragma. For most purposes, pragmata may be considered a type of statement.

Statement Description

$foo = ’bar’; Semicolon-terminated expression
use CGI; External module inclusion pragma
no warn; Syntax-warning disablement pragma

28

4.1 Perl Syntax WS 2004-05 / Jurish

4.1.5 Blocks

A block is just a sequence of statements, enclosed by curly brackets “{}”. The
value of a block is the value of the last expression in that block. Blocks may be
understood as “compound statements”. Example:

{

$bar = 42;

$foo = $bar;

}

4.1.6 Declarations

A declaration is a statement which defines and creates a variable or subroutine.

Declaration Description

my ($foo,$bar); Variable declarations
sub add { return $_[0] + $_[1]; } Subroutine declaration

While global variables do not need to be declared in Perl, it is usually a good
idea to lexically scope your variables by declaring them with my.

4.1.7 Control Structures

Other kinds types of complex statements include conditional expressions and
various looping constructs. Details on these can be found in Section 4.3.

29

WS 2004-05 / Jurish 4 THE GORY DETAILS

4.2 Perl Datatypes

“This may seem a bit weird, but that’s okay, because it is weird.”

[WCS96, p. 37]

4.2.1 Scalars

Scalars represent “singular” data – numbers, strings, and references.

• Scalar Literals (aka “constants”)

– Numbers

Literal Description

undef Undefined value
-3.14195 Floating-point constant (−π)
2.997925e8 SI float constant (speed of light)
42 Decimal integer constant (the answer)
010 Octal integer constant (decimal 8)
0xff Hexidecimal integer constant (decimal 255)

– Character24 Strings

Literal Description

’moo’ Single-quoted string
"cow" Double-quoted string
q(moo) Single-quoted string (alternate)
qq(cow) Double-quoted string (alternate)

• Scalar Variables

Scalar variables are identified by the funny character prefix “$” (dollar
sign).

• Scalar Terms

Scalar terms include scalar literals, scalar variables, indexing operations
on arrays and hashes, as well as certain builtin perl subroutines and dec-
larations.25

Scalar Term Description

$s Scalar variable
$a[0] Array indexing operation
$h{’moo’} Hash indexing operation

• Common Operations

24 For those who might be wondering, a Perl “character” is a creature at least 8 bits
wide, and might sometimes be wider. See the documentation of your Perl – especially
the perllocale(1) manpage and the perlunicode(1) manpage – for details.

25 I frequently lump some of these notions together and refer to scalar terms as simply
“scalars”, and to non-literal scalar terms as “scalar variables” (or even just “scalars”) – if this
seems confusing, it is: when in doubt, construct a test case and feed it to perl.

30

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perllocale.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlunicode.html

4.2 Perl Datatypes WS 2004-05 / Jurish

– Assignment

All assignments in Perl have the same format:

Schema Example Description

LVALUE = EXPR $x = $y Assignment: read “$x gets $y”

The value of an assignment is the value assigned.

– Implicit Conversion

Scalars are implicitly converted from numbers to strings and vice
versa, depending on how they are used – guaranteeing that a variable
used as a number actually contains a meaningful numeric value is the
programmer’s problem.

A single scalar used in list context looks just like a list with only one
element, which is exactly how it’s treated.

The undefined value “undef” evaluates to zero when used as a num-
ber, and evaluates to the empty string when used as a string – in
either of these cases, expect “perl -w” to complain.

• Logical Operations (aka “boolean operations”)

– Truth

∗ “False” scalar values are all and only the following:
Value Description

” Empty string
0 Number zero
undef Undefined value (reduceable)

∗ Every scalar value which is not a “false” value is considered to
be a “true” value. By convention, the canonical “true” value is
the number 1.

– Scalar Comparisons

Schema Example Description

EXPR eq EXPR $x eq $y String equality
EXPR ne EXPR $x ne $y String inequality
EXPR gt EXPR $x gt $y String greater-than
EXPR ge EXPR $x gt $y String greater-or-equal
EXPR lt EXPR $x lt $y String less-than
EXPR le EXPR $x lt $y String less-or-equal

EXPR == EXPR $x == $y Numeric equality
EXPR != EXPR $x != $y Numeric inequality
EXPR > EXPR $x > $y Numeric greater-than
EXPR >= EXPR $x >= $y Numeric greater-or-equal
EXPR < EXPR $x < $y Numeric less-than
EXPR <= EXPR $x <= $y Numeric less-or-equal

– Logical Expressions

31

WS 2004-05 / Jurish 4 THE GORY DETAILS

Schema Example Description

EXPR && EXPR $x && $y C-style logical “and”
EXPR || EXPR $x || $y C-style logical “or”
! EXPR ! $x C-style logical “not”

EXPR and EXPR $x and $y PASCAL-style logical “and”
EXPR or EXPR $x or $y PASCAL-style logical “or”
not EXPR not $x PASCAL-style logical “not”

Perl’s logical expressions are subject to “short-circuit” evaluation –
this means that as few expressions as possible are evaluated by the
Perl interpreter to find their value.

Expression Value

$x && $y $x if $x is false, otherwise $y

$x || $y $x if $x is true, otherwise $y

!$x true if $x is not true

• Numeric Operations

Schema Example Description

EXPR + EXPR $x + $y Addition
EXPR - EXPR $x - $y Subtraction
EXPR * EXPR $x * $y Multiplication
EXPR / EXPR $x / $y Division
EXPR % EXPR $x % $y Modulus (remainder)
EXPR ** EXPR $x ** $y Exponentiation

VAR += EXPR $x += $y Addition with assignment
VAR -= EXPR $x -= $y Subtraction with assignment
...

...
...

VAR++ $x++ Autoincrement, returns old value
VAR-- $x-- Autodecrement, returns old value
++VAR ++$x Autoincrement, returns new value
--VAR --$x Autodecrement, returns new value

• String Operations

– String Concatenation

Schema Example Description

EXPR . EXPR ’moo’ . ’cow’ String concatenation
EXPR x EXPR ’moo’ x 3 String repetition

– Substring Access (string indexing)

32

4.2 Perl Datatypes WS 2004-05 / Jurish

Schema Description

length STR String length

index STR, SUB Substring search
index STR, SUB, POS Substring search (from POS)

substr STR, OFFSET Suffix extraction (lvalue)
substr STR, OFFSET, LEN Substring extraction (lvalue)

vec STR, OFFSET, BITS Binary substrings (lvalue)

– String Interpolation

Various funny characters and variable values can be “interpolated”
(read “substituted”) into string literals. What gets interpolated
where depends on the flavor of string you’re interpolating.

∗ Single-Quoted Strings
Escape Example Description

\’ ’moo\’s cow’ Embedded quote
\\ ’C:\\DOS’ Escaped backslash

∗ Double-Quoted Strings

· Escapes
Escape Description

\" Embedded quote
\n Newline
\r Carriage Return
\t Horizontal tab
\$ Escaped dollar-sign
\@ Escaped at-sign
\\ Escaped backslash

Perl allows other C-style escapes in double-quoted strings as
well. See the perlop(1) manpage for details.

· Variable Interpolation
Double-quoted strings (but not single-quoted strings) are
subject to “variable interpolation”, substituting variables’
values for the respective variables where those variables occur
in the string, thus the following code:

$x = 42; $str = "The answer is $x";

is equivalent26 to:

$str = "The answer is 42";

Variable identifiers may also be surrounded by curly brackets:
this can be useful to delimit variables from the surrounding
text:

print "2 to the ${x}th power is ", 2**$x;

∗ Backtic Strings
Backtic strings are interpreted as the command-lines of external
programs which Perl should call. The value of a backtic string

26As far as $str is concerned, that is.

33

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlop.html

WS 2004-05 / Jurish 4 THE GORY DETAILS

is the text printed by external program called to its standard
output (if any). Example:

$str = ‘echo moo‘;

∗ “Here” Documents
Shell-style “here” document string literals are supported by Perl,
and may specify their quoting style:

print <<"EOF";

This is a test.

This is ONLY a test.

EOF

• Bitwise Operations

Perl’s bitwise operations follow C syntax, and can operate on numbers
or binary strings. See the perlop(1) manpage and the entries for pack()
and unpack() in the perlfunc(1) manpage for details.

• Special Scalars

Perl has a plethora of special builtin scalar variables, the values of which
you, the programmer, may (or may not) examine, redefine, or otherwise
manipulate.

Variable Description

$_ General-purpose default variable
$& Last regex pattern match
$. Line number of current input filehandle
$| Output autoflush flag
$! Last OS error
$^E OS-specific error information
$@ Last eval() error
$0 Name of current program
$^W Warning flag

See the perlvar(1) manpage for more.

4.2.2 Context

Perl knows about two major “contexts”: scalar context and list context. An
expression may appear to have different values depending on which context it
gets evaluated in.

How do I know which context my expression is being evaluated in?

• Easy Cases

– Assignment

If the left-hand side of an assignment looks like a list27, Perl will
evaluate the right-hand side in list context, otherwise the right-hand
side will be evaluated in scalar context.

27 Any left-hand side which is an array, hash, slice, or list of lvalues looks like a list to Perl.

34

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlop.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlfunc.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlvar.html

4.2 Perl Datatypes WS 2004-05 / Jurish

– Force Scalar Context: scalar()

Perl’s builtin scalar() function forces its argument to be evaluated
in scalar context.

– Encourage List Context: (EXPR)

Enclosing your expression with round parentheses is a good way to
encourage perl to evaluate it in list context – this doesn’t always
work, however.

• Not Quite so Easy Cases

– Operator Expressions

Operators “supply” either list or scalar context to their operands –
see the documentation for the operator in question in the perlop(1) manpage
for details.

– Subroutine Calls

Context propagates into subroutine calls. You can use the builtin
wantarray() function within a subroutine to determine in which
context your subroutine was called. See the wantarray() entry in
the perlfunc(1) manpage for details.

• Other Cases

You may hear and/or read about such animals as “void context”, “don’t-
care context”, “boolean context”, “interpolative context”, and/or “object
context” – these can generally be considered variations on the theme of
“scalar context”, described above.

4.2.3 Lists and Arrays

Lists are ordered (possibly empty) sequences of scalar values, indexed by num-
ber.

• List Literals (aka “constants”)

– General

List literals are usually enclosed by round parentheses, elements are
separated by commata. Example:

(’moo’, ’the’, ’cow’)

– Word-lists

A special form of list literal can be used for lists of space-separated
literal strings:

qw(moo the cow)

• List Variables: Arrays

Arrays are identified by the funny character prefix “@” (at sign).

35

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlop.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlfunc.html

WS 2004-05 / Jurish 4 THE GORY DETAILS

• List Terms

List terms include list literals, arrays, slice operations on arrays and
hashes, as well as certain builtin perl subroutines.28

List Term Description

@a Array variable
@a[0,1] Array slice operation
@h{’moo’,’cow’} Hash slice operation

• Common Operations

– Assignment

List/array assignments have the common assignment format:

LVALUE = EXPR

List lvalues include array variables, slices, and list literals containing
only lvalues.

– Implicit Conversions

In scalar context, a list evaluates to the number of elements it con-
tains (the empty list evaluates to zero).

• List Truth

The only false list value is a list without any elements. This is because:

1. Boolean context acts like scalar context.

2. The value of a list in scalar context is the number elements it contains.

3. The only false numeric (scalar) value is the number zero.

• Indexing Operations

Schema Example Description

$#ARRAY $#ary Array length (final index)
$ARRAY [INDEX] $ary[$i] Array element access
(LIST) [INDEX] (qw(a b))[$i] List element lookup
@ARRAY [LIST] @ary[$i,$j] Array slice

• List Interpolation

– Scalars

The value of a scalar variable replaces that variable whenever the
variable occurs in a list literal (except for qw() word-lists, of course).
Similarly the value of an array-, list-, or hash-element lookup term
replaces that term in the value of a list literal. This means that the
following code:

$x = 42;

@ary = ("The answer is: ", $x);

is equivalent29 to:

@ary = ("The answer is: ", 42);

28 I lump these notions together and refer to list terms as “lists”.
29Regarding only @ary, that is.

36

4.2 Perl Datatypes WS 2004-05 / Jurish

– Lists

Since lists may contain only scalar values, no embedding of list or
array values is allowed30 – whole lists are “interpolated” flatly into
other lists, thus the following code:

@ary1 = qw(moo);

@ary2 = qw(cow);

@ary3 = (@ary1, qw(says the), @ary2);

is equivalent31 to:

@ary3 = qw(moo says the cow);

• Some Useful List Functions

Schema Description

split /PATTERN/, EXPR scalar → list conversion
join EXPR, LIST list → scalar conversion
sort LIST Alphabetical sort

See the perlfunc(1) manpage for more.

• Special Arays

Perl has a number of special builtin array variables to enrich your pro-
gramming experience.

Variable Description

@ARGV Command-line script arguments
@_ Subroutine parameters
@INC Module search path

See the perlvar(1) manpage for more.

4.2.4 Hashes

Hashes (or “associative arrays”) are unordered collections of scalar values in-
dexed (or “keyed”) by character strings32. To put it another way, “a hash is
just a funny kind of array in which you look values up using key strings instead
of numbers” [WCS96, p. 50].

• Hash Literals (aka “constants”)

There is no such thing a hash literal. Lists of key,value pairs serve the
same purpose – but see the description of the “=>” operator, below.

• Hash Variables

Hash variables are identified by the funny character “%” (percent sign).

• Common Hash Operations

30 You need references to do neat recursive things like this.
31Well, at least as far as @ary3 is concerned.
32 Of course, since Perl implcitly converts all scalar values to strings as needed, you can use

any scalar value as a hash key. In the case of references, you’ll need to fiddle a bit if you want
to get the original value back, though.

37

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlfunc.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlvar.html

WS 2004-05 / Jurish 4 THE GORY DETAILS

– Implicit Conversions

In list context, hashes are evaluated as lists of key,value pairs. Con-
versely, a list33 of key,value pairs can be directly used to populate a
hash, by just assigning it to the hash.

In scalar context, empty hashes evaluate to the number 0 (zero);
nonempty hashes evaluate to a funny looking string – have a look at
the perldata(1) manpage to learn what it means.

– Assignment

Hash assignments have the common assignment format:

LVALUE = EXPR

The only34 hash lvalues are hash variables. The right-hand-side of a
hash assignment is evaluated in list context, and is interpreted as a
series of key,value pairs which are used to populate the hash on the
left.

– The “=>” Operator

To improve readability, you can use the “arrow” operator “=>” when
constructing lists which will be used as hashes. It works almost
just like a comma “,” except that “=>” forces the term immediately
preceeding it (assumed to be a hash key) to be interpreted as a string,
so you can omit quotes – providing your hash keys don’t contain
spaces. Example:

%h = (

cow => ’moo’,

cat => ’meow’,

’deep thought’ => 42,

);

• Hash Truth

The only false hash value is an empty hash. The reasoning is analagous
to the case of truth for lists.

• Indexing Operations

Schema Example Description

$HASH { KEY } $h{’moo’} Hash value access
@HASH { LIST } @h{@keys} Hash slice

Usefully, the hash indexing operator brackets “{}” force their arguments to
be interpreted as strings – so you can omit the quotes on literal hash keys
– providing these don’t contain spaces, just like with the “=>” operator:

$h{moo} = ’cow’;

is equivalent to:

$h{"moo"} = ’cow’;

33Or array, or slice, . . .
34 I’m ignoring references here for the sake of convenience.

38

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perldata.html

4.2 Perl Datatypes WS 2004-05 / Jurish

• Hash Interpolation

Since there is no such thing as a hash literal, there is no such thing as hash
interpolation. Implicit conversion to and from lists of key-value pairs tells
you pretty much everything you need to know, though.

• Some Useful Hash Functions

Schema Example Description

keys HASH keys(%h) Get list of hash keys
values HASH values(%h) Get list of hash values
each HASH each(%h) (key,value) iterator for loops
delete INDEX delete($h{moo}) Remove a hash entry

• Special Hash Variables

Perl has a number of special builtin hash variables to bring joy to your
existence:

Variable Description

%ENV OS environment variables
%SIG Signal-handling subs
%INC Keeps track of included modules

See the perlvar(1) manpage for more.

4.2.5 Subs and Code

Subroutines will be dealt with in more detail in Section 4.3. You should know
now that subroutines (and CODE references) are identified by the funny character
“&” (ampersand).

4.2.6 Typeglobs and Filehandles

Typeglobs can be understood as a “meta-datatype” which stores whole symbol-
table entries. Typeglobs are identified by the funny character prefix “*” (aster-
isk). Their main use is to create aliases for variables or subroutines:

$x = 42;

*answer = \$x; # Variable alias

sub foo { return 42; }

*bar = \&foo; # Subroutine alias

$baz = ’bonk’;

@baz = qw(foo bar);

*bonk = *baz; # Multiple aliases

Another, older use for for typeglobs is for saving filehandles to a variable. These
days, there are lovely modules to handle such things. Filehandles will be dealt
with in more detail in Section 4.4.

39

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlvar.html

WS 2004-05 / Jurish 4 THE GORY DETAILS

4.2.7 Regular Expression Patterns

For present purposes, a regular expression pattern (“regex” or “pattern” for
short) is just a funny-looking string – either a literal or a scalar. Regular
expressions will be dealt with in more detail in Section 4.5.

4.2.8 References

References work much like C “pointers” to one of the basic Perl datatypes –
SCALAR, ARRAY, HASH, or CODE. References are themselves scalar values, which
means that you can use them to construct nested data structures. You can
construct a reference from an existing variable by prefixing the variable with
a backslash “\” in addition to that variable’s normal funny-character prefix.
References will be covered in more detail in Section 4.6.

40

4.3 Perl Control Structures WS 2004-05 / Jurish

4.3 Perl Control Structures

4.3.1 Conditionals

• Compound Conditionals

if (EXPR) BLOCK
if (EXPR) BLOCK else BLOCK
if (EXPR) BLOCK elsif (EXPR) BLOCK . . .

if (EXPR) BLOCK elsif . . . else BLOCK

Evaluates the conditional expressions EXPR in boolean context in the
order they appear until some EXPR evaluates to a true value, in which
case the BLOCK immediately following that EXPR is evaluated. If none
of the EXPRs evaluates to a true value and the final BLOCK of the
“if” statement is introduced by the keyword “else” , evaluates the final
BLOCK. At most one of the BLOCKs is evaluated. Returns the value of
the BLOCK evaluated, if any.

The “unless” statement provides a handy shorthand for the first two
forms of the “if” statement with an implicitly negated conditional ex-
pression:

unless (EXPR) BLOCK
unless (EXPR) BLOCK else BLOCK

are equivalent to, respectively:

if (!(EXPR)) BLOCK
if (!(EXPR)) BLOCK else BLOCK

• Conditional Modifiers

STATEMENT if EXPR;
STATEMENT unless EXPR;

Simple statements may occur with conditional modifiers just before the
statement-terminating semicolon. The schemata above are equivalent to:

if (EXPR) { STATEMENT; }

unless (EXPR) { STATEMENT; }

• Conditional Operators

TEST ? IF-EXPR : ELSE-EXPR

The C-style conditional test operator “?. . .:” provides a useful shorthand
for conditional statements which can be easily nested within other expres-
sions. It first evaluates the expression TEST in boolean context, and then
evaluates and returns the value of the expression IF-EXPR just in case
TEST evaluated to a true value, otherwise evaluates and returns the value
of the expression ELSE-EXPR.

• Examples

41

WS 2004-05 / Jurish 4 THE GORY DETAILS

A simple test

if ($x < 42) {

print "x is less than forty-two!\n";

}

Simple test with default case

if ($x % 2 == 0) {

print "$x is even.\n";

}

else {

print "$x is odd.\n";

}

Even/odd test using the conditional operator

print "$x is ", $x % 2 == 0 ? "even" : "odd", ".\n";

If the Clash were Perl hackers...

if ($I_go) {

print "there will be trouble.\n";

}

elsif ($I_stay) {

print "it will be double.\n";

}

4.3.2 Loops

• “while” Loops

while (EXPR) BLOCK
while (EXPR) BLOCK continue BLOCK
LABEL: while (EXPR) BLOCK
LABEL: while (EXPR) BLOCK continue BLOCK

Keeps evaluating the first BLOCK as long as the conditional expression
EXPR evaluates to a true value (in boolean context). “while” loops may
be introduced by an optional LABEL, which is just some identifier followed
by a colon “:”. Additionally, “while” loops may occur with an optional
“continue” BLOCK, which is executed between loop iterations.

You can use the keyword “until” in place of “while” as a shorthand for
a negated loop condition:

until (EXPR) BLOCK

is equivalent to:

while (!(EXPR)) BLOCK

• “for” Loops

for (INIT; TEST; INCR) BLOCK
LABEL: for (INIT; TEST; INCR) BLOCK

42

4.3 Perl Control Structures WS 2004-05 / Jurish

C-style loop construct. First evaluates the initialization expression INIT.
Then executes BLOCK as long as the conditional expression TEST eval-
uates to a true value. Executes the loop-incrementation expression INCR
between loop iterations. Any of the expressions INIT, TEST, and/or
INCR may be empty. The “for” loop is really just shorthand for:

INIT;
LABEL:
while (TEST) BLOCK
continue { INCR; }

• “foreach” Loops

foreach VAR (LIST) BLOCK
foreach VAR (LIST) BLOCK continue BLOCK
LABEL: foreach VAR (LIST) BLOCK
LABEL: foreach VAR (LIST) BLOCK continue BLOCK

Executes BLOCK once for each element of the list value LIST with that
value bound to the scalar loop variable VAR. If VAR is omitted, implicitly
uses the default loop variable $_.VAR is always local to the loop – it
regains its old value (if any) when the loop exits. As for “while” loops,
“foreach” loops can take “continue” blocks, which are executed between
loop iterations.

You can use the “for” keyword to mean “foreach”, but I don’t recom-
mend it.

• Loop Modifiers

STATEMENT while EXPR;
STATEMENT until EXPR;

As for conditionals, simple statements may occur with a loop modifier just
before the statement-terminating semicolon.

• Loop Control

– Loop Labelling
All loops may be labelled. By convention, label names are all upper-
case. A loop-label identifies the loop as a whole, not just its entry
point.

– “last”: Loop Termination

last

last LABEL

Like the “break” statement in C, Perl’s “last” command causes
immediate termination of the innermost enclosing loop (first form),
or of the loop labelled by LABEL (second form). “continue” blocks
for the terminated loop are not evaluated.

– “next”: Loop Continuation

next

next LABEL

43

WS 2004-05 / Jurish 4 THE GORY DETAILS

Like the “continue” statement in C, Perl’s “next” command causes
Perl to skip the rest of the current iteration and start with the next it-
eration. If the loop in question has a “continue” block, that block is
evaluated before the loop re-evaluates its conditional. As for “last”,
the optional LABEL refers to the loop to be restarted, which defaults
to the innermost enclosing loop.

– “redo”: Loop Repetition

redo

redo LABEL

Causes Perl to restart the current loop iteration without evaluating
the loop’s “continue” block (if any) or conditional. LABEL names
the loop to be restarted, default is the innermost enclosing loop.

• Pseudo-Loops

BLOCK
BLOCK continue BLOCK
LABEL: BLOCK
LABEL: BLOCK continue BLOCK

You can arbitrarily distribute blocks throughout your program, giving
them labels and/or “continue” blocks, if you so desire. This allows you
to use loop control primitives such as next, last, and redo to control
program execution when even a “while” loop is too restrictive.

• Looping Expressions

grep BLOCK LIST
map BLOCK LIST

Looping expressions differ from loop statements mostly in the fact that
looping expressions have a meaningful value, which loop statements such
as “while” and “for” do not.35

The “grep” function evaluates BLOCK for each element of LIST in turn,
locally binding the variable “$ ” to each successive element, and returns
a list of all and only those values from LIST for which (the last statement
of) BLOCK returns a true value. Note that you can use the “$ ” variable
as an lvalue within a “grep” block to modify the original list values, but
such tricks are not likely to improve the readability of your code, and may
cause much wailing and gnashing of teeth in case your original list values
were not themselves lvalues.

Like “grep”, the “map” function evaluates BLOCK for each element of
LIST in turn, locally binding the variable “$ ” to each successive element.
Also as for “grep”, the “$ ” variable may be used within BLOCK as an
lvalue to modify the original contents of LIST.36 Unlike “grep”, “map”
returns a list composed of the results of the evaluations of BLOCK.37

35 The value of a loop statement such as “while” is usually the value of the last test condition
evaluated, which is by definition a false value.

36 Here too, use of $ as an lvalue can be dangerous as well as cryptic.
37 Note that you can produce non-monotonic results by returning list values of varying

length from BLOCK. This is a Really Cool Thing.

44

4.3 Perl Control Structures WS 2004-05 / Jurish

Since “map” and “grep” (and, for that matter, “sort”) return list values,
you can chain them together to form truly monstrous-looking but remark-
ably efficient38 expressions. Enjoy, and see the perlfunc(1) manpage for
more details.

• Iterators

keys HASH
values HASH
each HASH

While these functions are not strictly speaking looping constructs (see
Section 4.2.4 for details), Perl is able to process them especially efficiently
when used within loops – used as the LIST value in a foreach loop, for
example, the keys() function need not extract and allocate space for all
the keys from HASH – it only needs to be able to enumerate those keys
one at a time – one key for each iteration of the loop. This is pretty much
exactly what Perl does when you say someting like:

foreach $key (keys(%myhash)) {

do_something_with($key);

}

. . . which is a Good Thing, since that’s usually the most intuitive way to
express what you want to do, anyways.

• Examples

Read lines from stdin

while ($line = <STDIN>) {

print "got line: $line";

}

As above with modifier

print "got line: $line" while $line = <STDIN>;

Iterate over a list literal

foreach $day (qw(Sun Mon Tue Wed Thu Fri Sat)) {

print "Today is $day.\n";

sleep 60*60*24;

}

Array iteration, keeping track of indices

@days = qw(Sun Mon Tue Wed Thu Fri Sat);

for ($i = 0; $i <= $#days; $i++) {

print "The ${i}th day of the week is $days[$i].\n";

}

38 Since the “grep” and “map” functions also fall into the category of “iterators” – see below.

45

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlfunc.html

WS 2004-05 / Jurish 4 THE GORY DETAILS

Infinite loop with label & explicit exit condition

SHAMPOO:

while (1) {

foreach $act (qw(wash rinse)) {

perform_action($act);

last SHAMPOO if (out_of_water());

}

}

Filter out undefined values

@defined_things = grep { defined($_) } @things;

Normalize all list elements to upper-case

@capital_stuff = map { uc($_) } @stuff;

4.3.3 Jumps

goto LABEL
goto EXPR
goto &SUBNAME

Perl supports control “jumping” with the “goto” command. Such commands
are rarely (if ever) necessary, and generally do not help readability, re-usablity,
maintainability, or efficiency. Try to avoid them. See the perlsyn(1) manpage
if you need to know more about them.

4.3.4 Subroutines

• Declaration

sub NAME BLOCK

Declares a subroutine (read “function”, “procedure”, or “method”) named
NAME as a shorthand for the command-block BLOCK (also known as the
“body” of the subroutine). You can later cause the commands in BLOCK
to be executed by calling NAME as you would any builtin Perl command,
such as print.

• Parameters
Within a subroutine’s body, the special array @ holds the actual param-
eter values with which that subroutine was called, thus:

sub printus {

print "my arguments were: ", @_, "\n";

}

printus(1,2,3);

46

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlsyn.html

4.3 Perl Control Structures WS 2004-05 / Jurish

prints:

my arguments were: 123

You can even use @ as an lvalue, and the changes will be propagated to
the parameters in the calling context – providing those paremeters were
lvalues, of course:

sub plural {

$_[0] .= ’s’;

}

plural($word = ’cow’);

print "word is now ’$word’\n";

prints:

word is now ’cows’

• Return Values

return

return EXPR

User-defined subroutines can specify how to compute their values by use of
the “return” command, which causes the subroutine currently executing
to terminate immediately and evaluate to the value of EXPR if specified,
and otherwise to undef. Thus,

sub pow2 {

return 2**$_[0];

}

print "2 to the 4th power is: ", pow2(4), "\n";

prints:

2 to the 4th power is: 16

If your subroutine doesn’t explicitly return any value, it will return the
value (if any) of the last expression in its body BLOCK that it evaluates.
Note that you can return list values as well as scalar values from a sub-
routine – and even use wantarray() to determine what kind of value your
caller expects.

• Anonymous Subroutines

sub BLOCK

Omitting the NAME part of a subroutine declaration causes an anonymous
subroutine to be created and returned as a CODE reference (a scalar value).
You can later call such a reference by using the “&” operator:

$mysub = sub { print "I’m anonymous.\n"; }

&$mysub();

prints:

47

WS 2004-05 / Jurish 4 THE GORY DETAILS

I’m anonymous.

It is always a good idea to use explicit parentheses when calling subroutines
using the “&” operator, since omitting such parentheses causes the current
value of @ to be passed. See the perlsub(1) manpage for details.

4.3.5 Declarators and Scope

• Global Scope
By default, Perl variables are automatically created with global scope
– this means they can be “seen” (their values can be referred to) from
anywhere with your program. This can be handy, but often makes a
program harder to maintain.

• “my”: Lexical Scope

my (LIST)

The most common alternative to globally scoped variables are lexically
scoped variables. A lexically scoped variable in Perl must be declared with
the keyword “my”. Lexically scoped variables (henceforth, “my” variables)
cease to exist when the innermost block enclosing their declaration exits,
and are “invisible” outside of that block, although they can be seen by
sub-blocks. In particular, “my” variables in a subroutine are local39 to a
particular instance of that subroutine: each time you call the subroutine,
a new set of “my” variables gets allocated.

Wrong: $n gets overwritten

sub factorial_global {

$n = shift(@_); # global scope

return 1 if ($n < 1);

return $n * factorial_global($n-1); # oops!

}

Right: "my $n" gets re-allocated

sub factorial_lexical {

my $n = shift(@_); # lexical scope

return 1 if ($n < 1);

return $n * factorial_lexical($n-1); # better

}

• “local”: Dynamic Scope

local LIST

Dynamically scoped variables (henceforth, “local” variables) are like “my”
variables, in that they cease to exist when the innermost block enclosing
their declaration exits, but are like global variables in that while they
exist, they can be “seen” from anywhere within your program. You can
think of “local” variables as temporary global variables.

39 In the conceptual sense, not in the sense that a variable declared with “local” is “local”.

48

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlsub.html

4.3 Perl Control Structures WS 2004-05 / Jurish

• Closures

my VAR;
$closure = sub { . . . VAR . . . };

Closures are anonymous subroutines with a “dangling” reference to one
or more lexically scoped variables. The nifty thing about closures is that
as long as the closure (which is technically speaking a CODE reference)
hangs around, the “my” variable of closure (above, “VAR”) continues to
exist. This is useful for doing tricky object-oriented things, implementing
callbacks, or just to improve modularity (and sometimes even efficiency).
Closures are Totally Cool Things commonly used in functional program-
ming languages sub as Lisp.

4.3.6 Errors and Warnings

• Program Termination

exit EXPR

Evaluating this statement causes the currently running Perl program to
immediately terminate with an exit status of EXPR (which should have
an integer value). The conventional exit status for program termination
under normal conditions is 0 (zero).

• Fatal Errors

die LIST

Evaluating this statement causes the currently running Perl program to
print the value of LIST to STDERR and then immediately terminate with
an exit status indicating abnormal program termination. You can use the
variable $! within LIST to refer to the most recent error message from
the host operating system, if any.

• Warnings

warn LIST

If perl is running with the -w switch, evaluating this statement prints
LIST to STDERR, much as die() does, but unlike die(), does not cause
the running program to terminate.

• Roll-Your-Own Error Handling

$SIG{__WARN__} = CODE;
$SIG{__DIE__} = CODE;

You can specify your own warning- and error-handling routines by assign-
ing them (as CODE references) as values to the __WARN__ and/or __DIE__
keys of the special global hash %SIG. Your handlers will be passed the
error or warning message as their first argument if and when warn() or
die()40 are called.

40 or carp() or croak() etc.

49

WS 2004-05 / Jurish 4 THE GORY DETAILS

• Examples

Produce a fatal error if ’myfile.txt’ can’t be opened

open(OUT,">myfile.txt")

or die("open failed for ’myfile.txt’: $!");

Warn the user about an undefined variable

warn("Hey - you forgot to define ’\$x’!\n")

if (!defined($x));

DIY Handlers: Step 1: define a handler

sub my_warn_handler {

my $msg = $_[0];

warn("my_warn_handler: $msg") if ($DOWARN);

}

DIY Handlers: Step 2: install the handler

$SIG{__WARN__} = \&my_warn_handler;

DIY Handlers: Alternative: use anonymous sub

$SIG{__DIE__} = sub {

my_warn_handler(@_);

cleanup_temporary_files();

exit(1);

};

4.3.7 Dynamic Evaluation

eval EXPR
eval BLOCK

• Expression Evaluation: Dynamic Code
The form “eval EXPR” causes EXPR (any expression, expected to re-
turn a string value) to be parsed and evaluated as Perl code in scalar
context, and returns the result of evaluating this code. It is not terribly
efficient, but can be quite handy if you need to generate program content
dynamically at run-time.

• Block Evaluation: Exception Trapping
The form “eval BLOCK” causes the contents BLOCK to be parsed as
usual at compile-time, but blocks propagation of fatal errors out of the
BLOCK. The return value of the eval statement is the value of the last
statement evaluated in BLOCK.

• eval and Errors
If any errors occur while parsing or evaluating an eval statement, eval
returns undef, and sets the global special variable $@ to the error message.
If no error occurred, then $@ is guaranteed to be an empty string.

• Examples

50

4.3 Perl Control Structures WS 2004-05 / Jurish

Dynamic variable naming (dangerous!)

$xref = "\$x";

eval "$xref = 42;";

Make divide-by-zero errors non-fatal

eval { $answer = $a / $b; };

warn $@ if $@;

4.3.8 External Code

• External Scripts

do EXPR

Interprets the expression EXPR as the name of a file and attempts to
evaluate the contents of that file as Perl code. Returns a true value on
success, otherwise undef.

If the file cannot be read, the variable $! will be set to an appropriate
error message. Otherwise, if the file can be read but not compiled, then
the variable $@ will be set to an appropriate error message. Otherwise, if
the file is successfully read and compiled, then the do statement returns
the value of the last expression evaluated in the file.

Typical uses of do include reading in libraries of Perl subroutines, or read-
ing in program-specific configuration files. These days, it is more common
to write full-blown Perl modules and include these with either the use

pragma or a require statement.

• External Modules
Since we haven’t encountered packages yet, I cannot adequately explain
exactly what a Perl Module is . . . for now, you can think of a module as
a “black box” full of various algorithmic goodies provided by those nice
folks on CPAN for your fun and enjoyment. Most modules come with
their own documentation, which you can read with the perldoc program.

– Compile-Time Inclusion

use Module
use Module LIST

Attempts to load the module Module (a bareword) at compile time
by searching the root directories of the default module include path
@INC, replacing any :: in Module with a directory separator, and
looking for the file Module.pm. Causes a fatal error if Module cannot
be found, or if the last expression evaluated in Module.pm does not
return a true value.

If LIST is specified, it is (usually) interpreted as a list of variable-
, subroutine-, and or “tag”-names which should be imported from
Module into the calling namespace. See the perlmod(1) manpage
for details.

– Runtime Inclusion

51

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlmod.html

WS 2004-05 / Jurish 4 THE GORY DETAILS

require EXPR

Causes the module named by evaluating the expression EXPR to be
loaded (by searching for it in the default module search path) if it is
not loaded already. Causes a fatal runtime error if the module cannot
be found, or if evaluating the module file fails to return a true value.
Unlike use, the require statement gets evaluated at run-time, and
does not perform any implicit import of symbols from the module
loaded.

• Version Checking

use Module VERSION LIST
use Module VERSION
use VERSION
require VERSION

If you specify a VERSION (usually a funny-looking numeric literal) to
the “use” statement, the Perl interpreter will attempt to ensure that the
version of Module loaded is at least VERSION.

If you omit a Module and simply “use VERSION” or “require VER-
SION”, then VERSION will be interpreted as the minimum version of
Perl necessary to run your script, and will generate a fatal error if the
interpreter’s own version number is less than VERSION.

See the entries for “require EXPR” and “use Module” in the perlfunc(1) manpage,
as well as the perlmod(1) manpage for details.

52

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlfunc.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlmod.html

4.4 Perl I/O WS 2004-05 / Jurish

4.4 Perl I/O

4.4.1 Filehandles

A Perl Filehandle (or simply Handle) is just a Perl syntactic element for rep-
resenting a stream to or from which data may flow.41 Perl filehandles behave
like an additional elementary datatype (like scalars, arrays, and hashes) which
are not prefixed by any funny character – thus, “pure” filehandle names always
appear as barewords.

• Standard Filehandles
Perl defines the following three standard streams for each process:

C Name Perl Name Description

stdin STDIN Standard input (keyboard)
stdout STDOUT Standard output (screen)
stderr STDERR Standard error-output (screen)

The “normal” configuration of the standard streams for a simple program
call is shown in Figure 1.

Figure 1: Program call without redirection

prog1.perl
STDIN STDOUT

STDERR

bash$ prog1.perl

• Typical Filehandle Operations

– Opening

open HANDLE, MODE, NAME
open HANDLE, EXPR

Opens the filehandle HANDLE for I/O in mode MODE to and/or
from NAME, which is evaluated as a string. Exactly what this string
should contain depends on what you are trying to open – see Sections
4.4.2 and 4.4.3 below, the “open” entry in the perlfunc(1) manpage,
and also the perlopentut(1) manpage.

– Reading Text

41 See Section 3.5 for a brief introduction to streams and handles.

53

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlfunc.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlopentut.html

WS 2004-05 / Jurish 4 THE GORY DETAILS

<HANDLE>
<>

The <HANDLE> operator reads and returns a single line of input
from the filehandle HANDLE in scalar context. In list context, it
reads and returns a list of all remaining lines from HANDLE, which
in any case should be opened for reading. On end-of-file, <HANDLE>
returns undef.

As a special case, you can omit the HANDLE argument on the line-
input operator, which causes input to be read from the files named
by your script’s command-line arguments42, or from STDIN if no ar-
guments were given.

– Writing Text

print HANDLE LIST
print LIST

Prints the elements of LIST to HANDLE in the order specified. HAN-
DLE should be a filehandle opened for writing. If HANDLE is omit-
ted, prints to STDOUT.

– Writing Text, C-Style

printf HANDLE FORMAT, LIST
printf FORMAT, LIST

C-style printf() function. If HANDLE is omitted, prints to STD-
OUT. You will never need this function (because Perl has sprintf(),
too). When you want it, it is very nice to have it available. See the
sprintf(3) manpage or the printf(3) manpage for details on the
printf() available on your system, and see the “sprintf()” entry
in the perlfunc(1) manpage for details on Perl’s builtin sprintf()

function.

– Setting Binary Mode

binmode HANDLE

On silly systems that distinguish between “binary” and “text” files43,
you will need to call binmode() on any handles which may contain
non-text data before performing any read or write operations on those
handles.

– Reading Binary Data

read HANDLE, SCALAR, LENGTH

Attempt to read LENGTH bytes of data from HANDLE into the vari-
able SCALAR. Returns the number of bytes actually read, 0 (zero)
at end-of-file, or undef if there was an error.

You might also just want to set the $/ variable to your favorite record
separator and use the line-input operator “<HANDLE>”.

– Writing Binary Data

print HANDLE LIST
print LIST

42 Remember the @ARGV array?
43 Such as DOS and Windoof.

54

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlfunc.html

4.4 Perl I/O WS 2004-05 / Jurish

Perl will happily print() binary data – for Perl, such data can be
easily encoded as a funny-looking string. See the entry for “pack”
in the perlfunc(1) manpage for a good way to create such strings,
and check out the Storable module if you want to save Perl data
structures. If you just want a persistent hash or array, check out the
DB File , GDBM File , NDBM File , ODBM File , SDBM File , and/or
AnyDBM File modules.

– Setting Autoflush

require IO::Handle;

HANDLE->autoflush();

Causes output to HANDLE to be unbuffered: that is, anything writ-
ten to HANDLE will be written immediately. Useful for pipes and
other IPC related handles.

– Closing

close HANDLE

Closes the handle HANDLE. Returns true on success, false if there
was an error.

It is good practice to close your handles when you are done with them.
Any opened handles are automatically closed when your program
terminates, though.

• Examples

Open a filehandle

open(FH, $myfile)

or die("open failed for ’$myfile’: $!");

Read from command-line files or STDIN

while ($line = <>) {

do_something($line);

Write to a file

print FH "Hello, handle!\n";

Set binary mode

binmode(BINFH);

Read up to 42 bytes of binary data from BINFH

$nbytes = read(BINFH, $data, 42);

Write binary data to BINFH

print BINFH pack(’i*’, 420, 24, 7);

4.4.2 Files

• Shell Redirection

bash$ PROGRAM < FILE
bash$ PROGRAM > FILE

55

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlfunc.html
http://cpan.uwinnipeg.ca/module/Storable
http://cpan.uwinnipeg.ca/module/DB_File
http://cpan.uwinnipeg.ca/module/GDBM_File
http://cpan.uwinnipeg.ca/module/NDBM_File
http://cpan.uwinnipeg.ca/module/ODBM_File
http://cpan.uwinnipeg.ca/module/SDBM_File
http://cpan.uwinnipeg.ca/module/AnyDBM_File

WS 2004-05 / Jurish 4 THE GORY DETAILS

Most command-line shells enable the user to redirect the standard streams
to/from file(s) (known as “file redirection”).44 Although shell redirection
is not strictly part of Perl, many Perl programs are written to be used
as “filters”: programs which read data from STDIN and write (modified)
data to STDOUT, so that they may be used within a shell pipeline. Some
examples of shell redirection of the standard streams are given in Figures
2 and 3.

Figure 2: Input redirection from file

STDIN

STDERR

STDOUT

prog1.perl

bash$ prog1.perl < file1.txt

file1.txt

Figure 3: Output redirection to file

STDIN

STDERR

STDOUT

prog1.perl

bash$ prog1.perl > file1.txt

file1.txt

• Opening

open HANDLE, MODE, FILENAME
open HANDLE, FILESPEC

Opens the handle HANDLE for I/O in mode MODE to/from the file
named FILENAME. The MODE argument specifies how the file should
be opened: for reading, writing, or appending. In the two-argument form,
the FILESPEC should be a string resulting from concatenating a MODE
string (the “mode-prefix”) and a FILENAME.

44 Note that some non-POSIX operating systems (such as DOS and its ilk) stubbornly
refuse to redirect “binary” data.

56

4.4 Perl I/O WS 2004-05 / Jurish

Mode Description

< Read only
> Write only, overwrites old data
>> Write only, append
+< Read and write (dangerous!)
(none) Input only, like “<”

• Testing

-X HANDLE
-X EXPR

Perl has some handy builtin shell-like filetest operators (above abstracted
as “X”) to test the status of files based on either expressions evaluating
to their filenames or on opened handles.

Operator Description

-r File is effectively readable
-w File is effectively writable
-x File is effectively executable

-e File exists
-z File has zero size (is empty)
-s File has nonzero size (returns size in bytes)

-f File is a plain file
-d File is a directory
-t File is a tty (terminal)

-T File is an ASCII text file
-B File is a “binary” file

See the entry for “-X” in the perlfunc(1) manpage for more.

• Pseudo-Filenames
The pseudo-filename “-” (minus) is special when used in a call to open().
If used as an input filename, it refers to STDIN. If used as an output file-
name, it refers to STDOUT. This jives well with the command-line syntax
of many common UNIX utility programs, such as cat(1) or grep(1).

• Examples

Open ’file1.txt’ for reading

open(FILE1, "<", "file1.txt")

or die("open failed for ’file1.txt’: $!");

Same thing, but shorter

open(FILE1, "<file1.txt")

or die("open failed for ’file1.txt’: $!");

Same thing, even shorter

open(FILE1, "file1.txt")

or die("open failed for ’file1.txt’: $!");

57

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlfunc.html

WS 2004-05 / Jurish 4 THE GORY DETAILS

Open "output.txt" for writing, overwriting old data

open(OUT, ">output.txt")

or die("open failed for ’output.txt’: $!");

Open "output.txt" for writing, appending to old data

open(OUT, ">>output.txt")

or die("open failed for ’output.txt’: $!");

See if ’whosit.txt’ already exists

die("where is ’whosit.txt’?\n") if (! -e ’whosit.txt’);

Check whether we are in a pipeline

print("We’re not in a pipeline")

if (-t STDIN && -t STDOUT);

4.4.3 Pipes

• Shell Pipelines

bash$ PROGRAM1 | PROGRAM2

Most command-line shells enable the user to redirect the standard streams
to/from other programs (known as a “pipeline”).45 A graphical example
of shell pipelining is given in Figure 4.

Figure 4: A simple pipeline

STDIN STDOUT

STDERR

prog1.perl
STDIN STDOUT

STDERR

prog2.perl

bash$ prog1.perl | prog2.perl

• Opening Pipes

open HANDLE, MODE, COMMAND
open HANDLE, CMDSPEC

Opens the handle HANDLE for I/O in mode MODE to/from the command
COMMAND (possibly with arguments). The MODE argument specifies
whether a pipe should be opened to (|-) or from (-|) COMMAND. In

45 Again, some non-POSIX operating systems (such as DOS and its ilk) inexplicably refuse
to redirect “binary” data.

58

4.4 Perl I/O WS 2004-05 / Jurish

the two-argument form, the CMDSPEC should be a string resulting from
replacing the “-” (minus) character in the plain MODE value with the
string COMMAND.

Mode Description

|- Write to COMMAND’s STDIN
-| Read from COMMAND’s STDOUT

You cannot open a single pipe for both reading and writing, but see the
IPC::Open2 module for a workaround.

• Examples

Open a pipe from ’perldoc -u perltoc’

open(PERLTOC, "-|", "perldoc -u perltoc")

or die("open failed for pipe from ’perldoc’: $!");

Open a pipe from ’perldoc -u perltoc’, shorter

open(PERLTOC, "perldoc -u perltoc |")

or die("open failed for pipe from ’perldoc’: $!");

Read from a pipe (like any other handle)

@perltoc = <PERLTOC>;

Open a pipe to ’gfsmcompile’

open(FSMCOMP, "|-", "gfsmcompile -F myfsm.gfst")

or die("open failed for pipe to ’gfsmcompile’: $!");

Open a pipe to ’gfsmcompile’, shorter

open(FSMCOMP, "|gfsmcompile -F myfsm.gfst")

or die("open failed for pipe to ’gfsmcompile’: $!");

Write to a pipe (like any other handle)

print FSMCOMP "$qfrom $qto $labin $labout\n";

4.4.4 IO::File

The IO::File module provides an object-oriented interface to many types of
Perl filehandles, including files and pipes. The really nifty thing about IO::File
is that unlike “pure” filehandles, and IO::File object can be stored in a scalar
variable, so you can pass them to subroutines as parameters, store them in
arrays or hashes, etc.

See the IO::Handle(3pm) module manpage , the IO::File(3pm) module manpage
, and the IO::Pipe(3pm) module manpage for details.

• Prerequisites

use IO::File;

You should use or require the IO::File module before trying to call any
of the methods listed below.

59

http://cpan.uwinnipeg.ca/module/IPC::Open2
http://cpan.uwinnipeg.ca/module/IO::Handle
http://cpan.uwinnipeg.ca/module/IO::File
http://cpan.uwinnipeg.ca/module/IO::Pipe

WS 2004-05 / Jurish 4 THE GORY DETAILS

• Opening Files

IO::File->new(SPEC)

The new() method creates, opens, and returns a new IO::File object (a
scalar value) for I/O to/from SPEC which should be an expression as used
by the two-argument form of the builtin open() function. Returns undef
on failure.

• Line Input

$line = <$fh>;

@lines = <$fh>;

You can use the built-in line input operator on an IO::File object, too.

• Setting Binary Mode

$fh->binmode();

The binmode() method works just like the built-in function of the same
name.

• Reading Binary Data

$fh->read(SCALAR, LENGTH, OFFSET)

The read() method works just like the built-in function of the same name.

• Writing Data

$fh->print(LIST)
print $fh LIST

The print() method works just like the built-in function of the same
name.

You can use the built-in print() function on an IO::File object, too.

• Closing

$fh->close()

The print() method works just like the built-in function of the same
name.

You can use the built-in close() function on an IO::File object, too.

• Examples

Open the file ’input.txt’ for reading

$infh = IO::File->new("<input.txt")

or die("open failed for ’input.txt’: $!");

Read a line from the input IO::File

$line = <$infh>;

60

4.4 Perl I/O WS 2004-05 / Jurish

Open the file ’output.txt’ for writing

$outfh = IO::File->new(">output.txt")

or die("open failed for ’output.txt’: $!");

Write to an output IO::File

$outfh->print("Hello, IO::File!\n");

4.4.5 Sockets

Sockets are just generalized interprocess communication (IPC) channels. This
Section is about internet sockets, also known as “INET sockets”, which are a
type of socket designed for passing data between two computers on a network.
To use INET sockets, one machine (the “server”) must listen() on a given
port, and the other machine (the “client”) must connect() to that port on the
server – usually, the client must “know” the server’s IP address for this to work.

INET sockets are additionally characterized by their protocol, the most typical
of which are TCP46 and UDP47, as well as by the style (or type) of communi-
cation they allow.

Protocol Perl Name Typical Use

TCP "tcp" Lossless data exchange
UDP "udp" Lossy data exchange

Type C/Perl Constant Typical Use

stream SOCK_STREAM Lossless data exchange
datagram SOCK_DGRAM Lossy data exhchange

The parallels between the common protocols and types lead to the two most
common combinations:

Protocol Type Typical Use

TCP stream Lossless data exchange
UDP datagram Lossy data exchange

All the socket flavors described here are bidirectional: that is, you can use
them for both reading and writing, but be warned that your program needs to
figure out for itself when and how much it can read, otherwise it may well hang
(“block”) forever!

• Prerequisite: the IO::Socket::INET module

use IO::Socket::INET;

You can do everything in the rest of this section without this module, but
it’s a lot uglier without it.

• Creating a Client Socket

$c_sock = IO::Socket::INET->new(

PeerAddr => $server, # IP address or hostname

46 Transmission Control Protocol
47 User Datagram Protocol

61

WS 2004-05 / Jurish 4 THE GORY DETAILS

PeerPort => $port, # number or service name

Proto => $protocol, # protocol number or name

Type => $type # socket type constant

);

Creates and returns a new client socket for communicating with port $port
on the server $server using protocol $protocolwith type $type. Returns
undef on failure.

You can use the client socket $c_sock pretty much like any other filehan-
dle.

• Creating a Server Socket

$s_sock = IO::Socket::INET->new(

LocalAddr => $server, # IP or hostname (optional)

LocalPort => $port, # number or service name

Proto => $protocol, # protocol number or name

Type => $type, # socket type constant

Listen => $qsize, # client queue length

ReuseAddr => $bool, # reuse socket address?

Timeout => $seconds # timeout (optional)

);

Creates and returns a new server socket for listening on the port $port

of the local machine $server using protocol $protocol with type $type.
Returns undef on failure.

The “Listen” argument specifies the maximum number of clients which
should be allowed to queue for the port on the server before the server
refuses new incoming connections.

The “ReuseAddr” argument specifies whether the local address for the
socket should be re-used. Some high-level internet protocols (such as FTP)
require this option to bet set to a true value – it’s usually a good idea.

The “Timeout” argument specifies the timeout in seconds for various
socket operations (such as accept()) – leaving it undefined or specify-
ing 0 (zero) as the timeout will cause such operations to wait forever (or
until your program receives a signal for which a handler is defined).

If you do not specify the optional “LocalAddr” argument, then the socket
constant INADDR_ANY will be used, which will bind any valid IP address
your machine may have.

• Accepting Client Connections

$c_sock = $s_sock->accept();

The accept() method causes a server socket $s_sock to wait (until its
“Timeout” expires) for incoming client connections, returning a new IO::-
Socket::INET object for the client when such a connection occurs.

You can use the newly returned client socket $c_sock filehandle.

62

4.4 Perl I/O WS 2004-05 / Jurish

• Reading, Writing, etc.
Like IO::File, the IO::Socket class inherits from the abstract class
IO::Handle, so you can use the standard methods such as print(),
read(), close(), as well as the line-input operator on connected (client)
sockets. See the IO::Handle(3pm) module manpage , the IO::Socket(3pm) module manpage
, and the IO::Socket::INET(3pm) module manpage for details.

• Client Example: Get time of day

Connect to port for service ’daytime’ on ’localhost’

$dsock = IO::Socket::INET->new(

PeerAddr => ’localhost’,

PeerPort => ’daytime’,

Proto => ’tcp’,

Type => SOCK_STREAM,

)

or die("could not open socket: $!");

read time of day

$daytime = <$dsock>;

and disconnect

$dsock->close();

• Server Example: Provide time of day

Set up a server socket on port 42024

$sock = IO::Socket::INET->new(

LocalPort => 42024,

Listen => 5,

Proto => ’tcp’,

Type => SOCK_STREAM,

ReuseAddr => 1,

)

or die("could not create socket: $!");

Listen for incoming connections

+ NOTE: you will need to explicitly kill

this program yourself!

while ($client = $sock->accept()) {

chomp($date = ‘date‘); # call the ’date’ program

$client->print("$date\r\n"); # ... inform the client

$client->close(); # ... make them go away

}

63

http://cpan.uwinnipeg.ca/module/IO::Handle
http://cpan.uwinnipeg.ca/module/IO::Socket
http://cpan.uwinnipeg.ca/module/IO::Socket::INET

WS 2004-05 / Jurish 4 THE GORY DETAILS

4.5 Perl Regular Expressions

4.5.1 Friends and Relations

Regular expressions are known to formal linguists as a notational variant of finite
state automata. UNIX hackers may be familiar with their implementations
in such common utilities as grep, egrep, ed, sed, awk, vi, or emacs. Perl’s
regular expressions are very similar to those of the common UNIX utilities in
their syntax and semantics, the conventions for which differ slightly from those
commonly used by formal linguists. Still, it should be remembered that a regular
expression is just syntactic sugar for a finite state machine – this is generally a
Good Thing, since finite state machines are notoriously fast.

See the perlre(1) manpage and the “Regexp Quote-Like Operators” section
in the perlop(1) manpage for the full story.

4.5.2 Common Uses

Those readers familiar with finite state automata will be unsurprised that the
elementary operation associated with regular expressions is that of recognition,
more commonly known to UNIX and Perl hackers as pattern matching, where
the regular expression being “matched” constitutes the “pattern” in question.
I will adopt this terminology here, reserving the term “expression” for any Perl
expression as described in Section 4.1.3. The basic Perl schema for pattern
matching is:48

STRING =~ /PATTERN/

. . . where STRING is some string expression, and PATTERN is a Perl regular
expression. The slashes (/) surrounding PATTERN are literals. Such a match-
ing operation returns a true value if and only if STRING “matches” PATTERN
– in formal terms, iff STRING belongs to the language defined by PATTERN.49

PATTERN itself may contain any text, and interpolates Perl variables in string
context – for other syntactic and semantic oddities, see below. A common case
is:

if ($name =~ /moo/) { # ... ok, you found me

do_something($name);

}

. . . which matches any string $name which contains some occurrence of the
substring “moo”.

Another common use of Perl regular expressions is the “substitution” pattern
operator s///, which performs what are known to linguists as regular transduc-
tions: mappings from input strings to output strings:

48 Actually, you can omit STRING and the matching operator “=~” altogether, in which
case the match is performed against the contents of the default variable $.

49 Exactly what this value is depends on sub-patterns, context, and other niceties – see
the perlop(1) manpage for details.

64

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlre.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlop.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlop.html

4.5 Perl Regular Expressions WS 2004-05 / Jurish

STRING =~ s/SEARCH/REPLACEMENT/

This causes the first occurrence of a substring which matches SEARCH in
STRING to be replaced by REPLACEMENT. Of course, STRING must be
an lvalue in order for this to work.

$str = ’moocow’;

$str =~ s/moo/cow/; # $str is now ’cowcow’

4.5.3 Single-Character Patterns

This Section describes the major regular expression pattern elements for match-
ing single characters in the input string.

• Literal Characters
Almost any literal character can be included as-is in a regex pattern.
Literal characters match themselves.

/abc/ # match substring abc

/a b c/ # match substring ’a b c’ (with spaces)

• Wildcard Character
The special “wildcard” character “.” (dot) matches any single character
in the input string which is not a newline:

/a.c/ # match aac, abc, acc, adc, ...

• Escaped Literal Characters
Characters which have a special meaning within regex patterns can be
“escaped” (treated as literal characters) by preceeding them with a back-
slash:

/\/home\/moocow/ # matches /home/moocow

/c:\\dos\\run/ # matches c:\dos\run

/www\.cpan\.org/ # matches www.cpan.org

• Simple Character Classes
“Character classes” are common in the UNIX world, but less frequently
used by formal linguists, who like to reduce them to large unwieldy dis-
junctions. A “character class” is just a set of characters specified in the
pattern, the presence of any one of which in the input string counts as a
match. Character classes are enclosed in square brackets:

/[Aa]b[Cc]/ # matches AbC, Abc, abC, or abc

/[0123456789]/ # matches any digit

• Ranged Character Classes
Character classes can also be specified by “ranges”50, by specifying the
endpoints of the range separated by a “-” (minus):

50 Note that exactly what any given range contains depends on which character set you
happen to be using. Generally, you can consider yourself on safe ground with 7-bit ASCII,
but beyond that, you’re on your own.

65

WS 2004-05 / Jurish 4 THE GORY DETAILS

/[0-9]/ # matches any digit

/[A-Za-z]/ # matches any ASCII letter

• Negated Character Classes
Character classes may be “negated” – that is, you may specify a character
class which matches any character in the input string which is not a mem-
ber of the character class, by specifying a carat “ˆ” as the first character
of the class:

/[^z]/ # matches any character except z

/[^0-9]/ # matches any non-digit

• Predefined Character Classes
Perl has several very useful predefined character classes, which you may
use either directly within your patterns, or include them within other
character classes:

Construct Equivalent Class Description

\d [0-9] Digit character
\w [A-Za-z0-9_] Word character
\s [\r\t\n\f] Whitespace character

\D [^0-9] Non-digit character
\W [^A-Za-z0-9_] Non-word character
\S [^ \r\t\n\f] Non-whitespace character

4.5.4 Multi-Character Patterns

This Section describes the major regular expression pattern elements for match-
ing multiple characters in the input string.

• Sequence (Concatenation)
Sequences of regular expression pattern elements match corresponding
substring sequences in the input string. Many of the examples above
implicitly made use of sequenced patterns to match whole substrings by
specifying sequences of characters. This is a handy thing, but it gets even
cooler when you realize that any two regex patterns may be concatenated.

/abc/ # match a followed by b followed by c

• Optionality: ?
The “?” (question mark) pattern operator matches zero or one occurrences
in the input string of the pattern element immediately preceeding it.

/a?b/ # match b or ab

• Multipliers: * (Transitive and Reflexive Closure)
The “*” (asterisk) pattern operator matches zero or more occurrences in
the input string of the pattern element immediately preceeding it.

/a*b/ # match b, ab, aab, aaab, aaaab, ...

/[a-zA-Z]\w*/ # match a perl identifier

66

4.5 Perl Regular Expressions WS 2004-05 / Jurish

• Multipliers: + (Transitive Closure)
The “+” (plus) pattern operator matches one or more occurrences in the
input string of the pattern element immediately preceeding it.

/a+b/ # match ab, aab, aaab, aaaab, ...

/0x[\da-fA-F]+/ # match C-style hex literals

• General Multiplier (N-ary Closure)
The “{m, n}” pattern operator matches at least m but not more than n

occurrences in the input string of the pattern element immediately pre-
ceeding it. You may omit n, in which case no upper limit is imposed (as
for the “*” and “+” pattern operators). You may also omit the comma,
which is equivalent to {m, m}.

/a{2,4}/ # match aa, aaa, or aaaa

/a{2,}/ # match aa, aaa, aaaa, aaaaa, ...

/a{2}/ # match aa

• Alternation (Union, Disjunction)
Two regular expression pattern elements separated by the alternation pat-
tern operator “|” (vertical bar) match any string which matches one or
both of the two pattern elements:

/a|b/ # match a or b

/a+|b/ # match a, aa, aaa, ..., or b

For disjunctions of single characters, it is usually easier and more readable
to use character classes.

• Anchors
Perl regular expressions may contain a number of so-called “zero-width
anchors”, which can be understood as matching points in the input string
which lie between individual characters. Some common anchors are listed
below.

Anchor Description

^ Beginning of string or post-newline
$ End of string or pre-newline
\b Word boundary
\B Non-boundary

(?=PATTERN) Positive lookahead assertion
(?!PATTERN) Negative lookahead assertion

/^abc/ # match abc only at beginning of string

/def$/ # match def only at end of string

/\bmoo\b/ # match whole word moo

/\bmoo\B/ # match moocow, moose, ..., but NOT moo

/moo(?=cow)/ # match moo if followed by cow

/moo(?!cow)/ # match moo if not followed by cow

67

WS 2004-05 / Jurish 4 THE GORY DETAILS

4.5.5 Grouping Patterns

It is often necessary to group subpatterns within a regular expression, since the
builtin precedence rules for the pattern operators (see below) don’t always do
what you want. Perl’s pattern grouping operators allow you to do much more
than just disambiguate operator scope conflicts, however . . .

• Grouping: ()
Any subpattern may be enclosed in round parentheses51 “()”, which take
precedence over all other pattern operators.

/. . . (SUBPATTERN) . . ./

This allows you to write expressions such as the following:

/ab+/ # matches ab, abb, abbb, ...

/(ab)+/ # matches ab, abab, ababab, ...

/foo|bazbar/ # matches foo or bazbar

/(foo|baz)bar/ # matches foobar or bazbar

• Subpattern Memory: () and \N
The really cool part about subpattern grouping with round parentheses
is that Perl “remembers” the part of the input string which matched the
parenthesized subpattern, so you can refer to it later:

/. . . (SUBPATTERN) . . . \N . . ./

where N is the number of the parenthesized SUBPATTERN (starting from
1) to which you wish to refer.

/(foo)bar\1/ # matches foobarfoo

/a(.)b\1/ # matches aXbX, aYbY, ..., not aXbY

• Subpattern Memory and Substitution: s///, (), and \N
Parenthesized subpattern memory is extremely useful in “substitution”
(s///) regex patterns, especially in the REPLACEMENT part:

$str = ’cows say moo’;

$str =~ s/(\w+) say (\w+)/\2 is said by \1/;

print $str, "\n";

prints:

moo is said by cows

• Grouping Only: (?:)
If you aren’t interested in remembering what part of the input string
matched, and just want to group your subpatterns, you can use a (?:)

construct instead of plain round parentheses:

/. . . (?:SUBPATTERN) . . ./

51 Note that this is a major difference between Perl’s regular expressions and those found
in other UNIX utilities, which typically use backslashed parentheses “\(\)” for this purpose.

68

4.5 Perl Regular Expressions WS 2004-05 / Jurish

It is usually a good idea to use (?:) when you don’t need to “remember”
the matched substring, simply because (?:) constructs are a bit more
efficient.

4.5.6 Matching Miscellany

• Greedy vs. Lazy Matching
By default, Perl’s multiplier regular expressions are “greedy” – that is,
a pattern such as /a*/ will match as many “a” characters in the input
string as it can. Any pattern multiplier (?, +, *, or {m, n}) may be forced
to be non-greedy (or lazy) by following it with a question mark (?). This
can be useful for efficiency reasons (failed attempts at greedy matching
cause Perl’s matching engine to backtrack), or just to control more closely
how your pattern is matched.

• Pattern Operator Precedence
The following table lists the various pattern-internal operators in order of
precedence (highest to lowest):

Name Representation

Parentheses () (?:)

Multipliers ? + * {m,n} ?? +? *? {m,n}?

Sequences and Anchors abc ^ $ (?=) (?!)

Alternation |

• Variable Interpolation
You can interpolate the string-values of scalar variables into your patterns
just as you would into double-quoted strings. This even works if you have
special regular expression meta-characters (such as “.”, “*”, or “|”) in
your variables – they are interpreted as usual within the pattern:

$pattern = ’moo|cow’;

foreach $s (qw(cow moose bovine)) {

if ($s =~ /$pattern/) { # Interpolate!

print "/$pattern/ matched ’$s’ \n";

}

else {

print "/$pattern/ did NOT match ’$s’\n";

}

}

prints:

/moo|cow/ matched ’cow’

/moo|cow/ matched ’moose’

/moo|cow/ did NOT match ’bovine’

For efficiency reasons, it is usually best not to use variable interpolation in
regular expression patterns, since interpolation causes Perl to re-compile

69

WS 2004-05 / Jurish 4 THE GORY DETAILS

the regular expression every time it is matched (in case the interpolated
variable’s value has changed).52

• Quoting Escapes: \Q. . .\E

Sometimes a string is just a string – sometimes you don’t want special
regular expression pattern operators to have a special meaning. In these
cases, you can always “escape” (or “quote”) them with a backlash, as men-
tioned above. This can get ugly, and if the special characters happen to
be in the value of a variable that gets interpolated into the pattern, things
can get quite ugly indeed. Perl provides the \Q \E (“quoting escape”)
construct for just such cases:

$cpan=’cpan.org’; # just a string variable

/cpan.org/ # matches cpan.org, cpanAorg, ...

/$cpan/ # matches cpan.org, cpanAorg, ...

/cpan\.org/ # matches cpan.org only

/\Qcpan.org\E/ # matches cpan.org only

/\Q$cpan\E/ # matches cpan.org only

• Alternative Delimiters
Just as you can choose your own string delimiters with q{} and qq{}, you
can choose a regular expression delimiter other than slash (/) by using
the “matching operator” m{} for simple matches. As for q{} and qq{},
the m{} operator respects “natural pairs” of delimiters. Similary, you can
choose your own delimiters for substitution operations by simply using
them with the s{}{} operator.

/\/home\/moocow/ # my home directory

m/\/home\/moocow/ # ... with ’m’ operator

m#/home/moocow# # ... using # for delimiters

m(/home/moocow) # ... using () for delimiters

s/foo/bar/ # substitute ’bar’ for ’foo’

s#foo#bar# # ... using # for delimiters

s(foo)(bar) # ... using () for delimiters

• Special Variables
There are a number of special read-only match-related variables which you
can refer to after a successful match. Most useful are the special variables
$1, $2, $3 and so on, which refer to the same strings as \1, \2, \3 and so
on refer to within the matched pattern. Also useful are:

Variable Description

$& Matched substring
$‘ Unmatched prefix (“pre-match”)
$’ Unmatched suffix (“post-match”)

52 You can get some explicit control over re-compilation with the qr// operator – see
the perlop(1) manpage for details.

70

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlop.html

4.5 Perl Regular Expressions WS 2004-05 / Jurish

• Pattern Modifiers
Perl provides a few handy modifiers for whole patterns. One or more
modifiers may follow the closing delimiter of an m// or s/// pattern.

Modifier Description

g Match globally: find all occurrences
i Do case-insensitive matching
m Treat string as multiple lines
o Only compile pattern once
s Treat string as single line
x Ignore whitespace and comments within pattern

/abc/i # matches abc, abC, aBc, ..., ABC

s/foo/bar/g # replace all ’foo’s, not just the first

/$regex/o # assume value of $regex is constant

/^a\nb$/m # embedded newline ok, $ matches EOS

71

WS 2004-05 / Jurish 4 THE GORY DETAILS

4.6 Perl References

4.6.1 What is a Reference?

Perl’s “references” are similar to “pointers” as found in C or PASCAL. PROLOG
implicitly incorporates the notion of reference in the unification of uninstanti-
ated variables. Intuitively, a reference refers to some Perl datum – be it a scalar,
array, hash, or subroutine. A reference may refer to a local or global variable,
a constant, or (in the case of “hard” references) even to an “anonymous” Perl
datum – one for which the reference is the only access.

References themselves however are always scalar values – the act of recovering
the datum referred to (or “pointed at”) by a reference is known as dereferencing.

A tutorial on Perl references can be found in the perlreftut(1) manpage, and
details are available in the perlref(1) manpage.

4.6.2 Why References?

• Shared Data
References allow multiple scalars, arrays, and/or hashes to refer to the
same underlying datum – thus, changing the underlying value for one
instance causes that value to change for all instances.

• Nested Data Structures
Since references are scalar values, they can be inserted directly as single
elements into lists, or as values into hashes, without causing the implicit
“flattening” of the list (hash) in question known as “list interpolation”.
This allows you to build nested data structures such as:

– lists of (references to) lists,

– lists of (references to) hashes,

– hashes of (references to) lists,

– hashes of (references to) hashes,

– lists of (references to) lists of (references to) lists,

– etc.

• Abstraction & Encapsulation
The ability to construct nested data structures allows a greater degree of
hierarchical organization – complicated data structures can be organized
into a single (recursive) reference.

• Efficiency
Passing references to arrays or hashes into and/or out of your subroutines
is almost always more efficient than passing whole “flat” lists or hashes.
It also allows you to pass more than one list or hash into (out of) a
subroutine.

• Objects
Perl’s objects (class instances) are really just references which have been

72

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlreftut.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlref.html

4.6 Perl References WS 2004-05 / Jurish

bless()ed into some package (read “class”). See the perltoot(1) manpage
for a tutorial and the perlobj(1) manpage for details on Perl’s object
system.

4.6.3 Symbolic References

“Symbolic” references are also known as “soft” references or “fake” references,
and should be familiar to shell programmers. Although Perl allows the use of
symbolic references, these can be dangerous (not to mention cryptic) to use in
an actual program.

• Construction

– Symbolic reference from a variable
Assign the name of the variable as a string to the symbolic reference.

$x = 42; # Existing variable

$xr = "x"; # Symbolic reference

– New symbolic reference
Pick an unused variable name and assign it as a string to the symbolic
reference.

$newref = "unused1"; # New(?) symbolic reference

• Dereferencing
The string-form of eval() can be used to access and/or manipulate sym-
bolic references.

$xrval = eval "\$$xr"; # Get value

eval "\$$xr = 24;"; # Set value

• Dangers
Aside from being cumbersome, symbolic references can be dangerous –
the named variable underlying a symbolic reference may go out of scope
before the reference is used, or its value may get “clobbered” by another
variable of the same name.

• Upshot
Don’t use symbolic references if you can avoid it.

4.6.4 Hard References

Thingy (noun): Any Perl value residing in a chunk of physical
memory.

Unlike symbolic references, which are really just variable names stored as strings,
and therefore only work with named variables, “hard” references (also known
as “real” references) refer to a thingy itself – an actual Perl datum residing
somewhere in memory. This means that a hard reference can still be used even
after a named variable containing the thingy referred to has gone out of scope.

73

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perltoot.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlobj.html

WS 2004-05 / Jurish 4 THE GORY DETAILS

Hard references can even be created independently of any named variable –
such references are called “anonymous” references. Some examples of named
and anonymous references are given in Figure 5.

Figure 5: Symbol Tables and Hard References

TypeName Value

Symbol TablePerl Code

42$answer SCALAR

ARRAY (’Mo’, ’Di’, ...)@days

ARRAY (’Mo’, ’Di’, ...)

$answer = 42;

$ans_r = \$answer; $ans_r SCALAR

$days_r = \@days;

@days = qw(Mo Di ...);

$days_r SCALAR

$ary_r = [qw(Mo Di ...)]; SCALAR$ary_r

SCALAR(0x821380c)

ARRAY(0x8213824)

ARRAY(0x8213860)

• Construction

– Construction from a named value
A reference to any named value can be created by use of the backslash
operator53

∗ Scalars

$x = 42;

$scalar_ref = \$x;

∗ Scalar Constants

$constant_ref = \42;

∗ Arrays

@days = qw(Mo Di Mi Do Fr Sa So);

$array_ref= \@days;

∗ Hashes

%noises = (cow => ’moo’, cat => ’meow’);

$hash_ref = \%noises;

53 This use of Perl’s backslash operator shows its similarity to C’s “addressing” operator,
“&”.

74

4.6 Perl References WS 2004-05 / Jurish

∗ Subroutines

sub foo { return ’bar’; }

$code_ref = \&foo;

∗ Typeglobs

open(HANDLE, ">file.txt");

$glob_ref = *HANDLE;

– Anonymous References
An anonymous reference can be created together with the thingy it
points by using one of the “reference composer” opertors below:

∗ Arrays: [LIST]

$array_ref = [’a’, ’b’, ’c’];

∗ Hashes: { LIST OF PAIRS }

$hash_ref = { a=>1, b=>2, c=>3 };

∗ Subroutines: sub BLOCK

$code_ref = sub { return ’bonk’; };

– Implicit Reference Construction
Hard references (together with the thingies they point to) are created
implicitly if they are dereferenced appropriately in an assignment
expression, much like named Perl variables spring into existence the
first time they are assigned to.

• Dereferencing
Now that we’ve made some references, how do we get at their values?

– Reference Variables as Variable Names
Perl’s type-identifying “funny character” variable prefixes ($, @, %,
&) work as dereferencing operators, too.54 Used as dereferencing
operators, these funny characters appear as (additional) prefixes to
a scalar variable containing a hard reference. Anywhere you can put
an identifier as part of a variable or subroutine name, you can replace
that identifier with a simple scalar variable containing a reference to
a thingy of the appropriate type:

Basic Dereferencing: Lookup

$scalar_val = $$scalar_ref; # scalar dereference

@array_val = @$array_ref; # array dereference

%hash_val = %$hash_ref; # hash dereference

Basic Dereferencing: Assignment

$$scalar_ref = 42; # scalar dereference

@$array_ref = qw(a b c); # array dereference

%$hash_ref = (a=>1, b=>2); # hash dereference

Dereferencing + Element Access: Lookup

$elt_val = $$array_ref[0]; # array derefernce

$key_val = $$hash_ref{cow}; # hash dereference

Dereferencing + Element Access: Assignment

$$array_ref[0] = ’a’; # array dereference

$$hash_ref{cow} = ’moo’; # hash dereference

54 Similar to C’s dereferencing operator, “*”.

75

WS 2004-05 / Jurish 4 THE GORY DETAILS

You can think of the funny-character prefixes as being evaluated
right-to-left: thus, “$$array_ref[0]” is the first element of the array
referred to by the hard reference “$array_ref”, and not the scalar
referred to by the first element of the (normal) array “@array_ref”.

This is a handy (and more or less intuitive) syntax, but only allows
you access to a single level of reference-nesting at a time, which can
be frustrating when dealing with nested data structures.

– BLOCKs as Variable Names
Anywhere you can use an alphanumeric identifier as part of a variable
or subroutine name, you can also use a BLOCK which returns a
reference to a thingy of the appropriate type:

Block Dereferencing: Assignment

${$scalar_ref} = 42; # scalar dereference

@{$array_ref} = qw(a b c); # array dereference

%{$hash_ref} = (a=>1, b=>2); # hash dereference

Dereferencing + Element Access: Assignment

${$array_ref}[0] = ’a’; # array dereference

${$hash_ref}{cow} = ’moo’; # hash dereference

The useful things about BLOCKs as variable names are:

1. A BLOCK itself can contain any arbitrary expression, and

2. BLOCKs can themselves be nested.

2-dimensional array access

$a2d = [[qw(a b c)], [qw(d e f)]];

$elt = ${ ${$a2d}[0] }[1]; # $elt is now ’b’

– The Arrow Infix Operator: ->
Use of BLOCKs returning references as variable names is extensible
but quite ugly. For this reason, Perl provides the arrow infix operator
“->” to allow readable direct access to the elements of nested array
and hash references:

2-dimensional array access, with ->

$a2d = [[qw(a b c)], [qw(d e f)]];

$elt = $a2d->[0]->[1]; # $elt is now ’b’

2-dimensional hash access, with ->

$h2d = {

num2txt => { 0=>’zero’, 1=>’one’ },

txt2num => { zero=>0, one=>1, },

};

$num = $h2d->{txt2num}->{zero}; # $num is now 0

Even niftier is the fact that you can omit the “->” between braced or
bracketed subscripts (nested element access), so the above examples
become:

$elt = $a2d->[0][1];

$num = $h2d->{txt2num}{zero};

– Dereferencing Summary
The following three statements are equivalent:

76

4.6 Perl References WS 2004-05 / Jurish

$ $array_ref [0] = ’thingy’;

${ $array_ref }[0] = ’thingy’;

$array_ref->[0] = ’thingy’;

As are these:

$ $hash_ref {key} = ’thingy’;

${ $hash_ref }{key} = ’thingy’;

$hash_ref->{key} = ’thingy’;

• Type-Checking: ref()

You can use the builtin ref() function to learn what kind of thingy a
hard reference points to:

ref EXPR

If EXPR evaluates to a hard reference, returns a string indicating the type
of thingy to which that reference refers.

Returns a false value if EXPR does not evaluate to a hard reference.
Typical return values are:

’SCALAR’

’ARRAY’

’HASH’

’CODE’

’GLOB’

You can think of ref() as a typeof() operator for hard references.

4.6.5 Reference Counts and Memory Management

Every thingy that comes to be in the course of a Perl interpreter’s lifetime has
an internal reference count associated with it. The reference count for a thingy
is just a natural number – the number of hard references (or named variables)
currently pointing to the thingy in question.

Perl uses reference counts for memory management: each thingy continues to
exist in memory as long as at least one hard reference points to it. A thingy
get de-allocated55 when its reference count reaches zero – when no more hard
references point to it. This is why closures56 work: a closure (anonymous sub-
routine) may contain a reference to a lexical variable which has since gone out of
scope, but whose thingy continues to exist because of the reference to it encoded
in the closure.

Usually this memory-management scheme works well, since it handles even
nested references correctly:

$nested = [’foo’, ’bar’, [’baz’, ’bonk’]];

... stuff happens ...

$nested = undef; # recursive cleanup

When the variable $nested is re-assigned, Perl correctly traverses the array

55 Read: “cast into the eternal void”.
56 See Section 4.3.4.

77

WS 2004-05 / Jurish 4 THE GORY DETAILS

thingy to which it refers and de-allocates even the nested array [’baz’,’bonk’]

– providing that there are no other references to it lurking about, of course.

Perl’s reference-counting strategy has intrinsic difficulty dealing with “circular”
data structures, such as “$tree”, below:

$tree : a traversable tree structure

+ each node is a hash-ref of the form:

{

lab => $node_label,

mom => $mother_node, # undef for root node

dtrs => [$daughter_node_1, ...],

}

+ whole tree is represented by root node

$tree =

{

lab => ’S’, # root label

dtrs => [# daughters of root

{ lab=>’NP’, dtrs=>[] }, # ... first daughter

{ lab=>’VP’, dtrs=>[] } # ... second daugher

]

};

$tree->{dtrs}[0]{mom} = $tree; # Circular reference!

$tree->{dtrs}[1]{mom} = $tree; # ... and another!

As it stands, this structure will never get de-allocated by Perl, even if the
variable $tree goes out of scope and even if you explicitly remove the reference
to the root node that it contains, for instance by changing its value:

$tree = undef; # Wrong: reference-count is still nonzero!

This is because each daugher node (with labels ’NP’ and ’VP’) contains a refer-
ence to the root node as the value of the key ’mom’ for the daugher node, which
leaves the reference count for the root node at 2, even after the reference held
by the variable $tree has gone out of scope. Since the value of the ’dtrs’ key
for the root node contains references to the daughters, the daughters themselves
will not get de-allocated either. Even worse, after $tree has gone out of scope
(or been re-assigned), there is no way for you, the programmer, to access the
old reference – it just sits around and takes up memory. Currently, the only
way to convince Perl to clean up such circular reference chains is to break the
circular references yourself:

foreach $d (@{$tree->{dtrs}}) {

delete $d->{mom}; # Break 1 level of circular refs.

}

$tree = undef; # Right (here): no more circular refs.

Of course, in a “real” tree, you are likely to have more than one level of depth,
so a simple foreach loop such as that shown above would not suffice to break
all circular references, and you would have to do something like:

78

4.6 Perl References WS 2004-05 / Jurish

@nodes = ($tree); # Breadth-first search queue

while ($n = shift(@nodes)) {

delete $n->{mom}; # Break circular references

push(@nodes, @{$n->{dtrs}}) # Enqueue daughters

if (exists($n->{dtrs}); # ... if possible

}

$tree = undef; # Better: no more circular references.

4.6.6 Stringification

If you use a hard reference in some context which calls for a string value, the
reference will appear as a funny-looking string made up of a type-name and a
hexidecimal number:

$scalar_ref = \$x;

$array_ref = [qw(test 123)];

$hash_ref = { foo => ’bar’ };

$code_ref = sub { return undef; };

$glob_ref = *STDOUT;

print

"Scalar ref : $scalar_ref\n",

"Array ref : $array_ref\n",

"Hash ref : $hash_ref\n",

"Code ref : $code_ref\n",

"Glob ref : $glob_ref\n";

prints something like:

Scalar ref : SCALAR(0x825ffbc)

Array ref : ARRAY(0x8261738)

Hash ref : HASH(0x8266320)

Code ref : CODE(0x826638c)

Glob ref : GLOB(0x80fd4c8)

Although it is impossible to recover the actual reference from such a string value
(since the reference-count information gets lost in the conversion to a string),
two references will produce the same string-form if and only if they point to the
same underlying thingy, which means that you can test for reference-equality
with the eq operator:

$x = $y = 42;

$xref = \$x;

$xref2= \$x;

$yref = \$y;

sub eqcheck {

return $_[0] eq $_[1] ? ’yup’ : ’nope’;

}

print

79

WS 2004-05 / Jurish 4 THE GORY DETAILS

’$$xref eq $$yref ? ’, eqcheck($$xref, $$yref), "\n",

’ $xref eq $yref ? ’, eqcheck($xref, $yref), "\n",

’ $xref eq $xref2 ? ’, eqcheck($xref, $xref2), "\n";

prints:

$$xref eq $$yref ? yup

$xref eq $yref ? nope

$xref eq $xref2 ? yup

Since a reference cannot be recovered from its string-form, references do not
always work as you would expect when used as hash-keys, since the keys of a
hash must be strings.57 This means that something like the following will not
work:

$hash{\$x} = ’foo’; # Legal but non-recoverable!

... stuff happens ...

foreach $key (keys(%hash)) {

print "key=’$key’, deref=’$$key’\n"; # Wrong!

}

If you need to use references as hash keys and you need to be able to dereference
those references later, you can always use another hash to store the actual refer-
ences as hash values (which do not need to be strings), keyed by the references’
string-forms:

$hash{\$x} = ’foo’; # Keys cannot be dereferenced.

$vals{\$x} = \$x; # ... but values can.

... stuff happens ...

foreach $key (keys(%hash)) {

print "key=’$key’, deref=’${$vals{$key}}’\n"; # Works.

}

57 See Section 4.2.4 for details.

80

4.7 Perl Modules etc. WS 2004-05 / Jurish

4.7 Perl Modules etc.

4.7.1 What’s it All About?

The first step toward ecologically sustainable programming is simply:
don’t litter in the park.

[WCS96, Ch. 5]

Perl provides several useful mechanisms for ensuring that the metaphorical
park stays nice and tidy – chief among these are Packages, Modules, and Ob-
jects; each of which are discussed individually in the following sections. See
the perlmod(1) manpage for details on Perl packages and modules, and see
the perltoot(1) manpage and the perlobj(1) manpage for details on Perl ob-
jects.

4.7.2 Packages

A Perl “package” is just a namespace in which variables, subroutine names, and
filehandles may be located. Placing specialized code in its own package reduces
the chance of name conflicts (“clobbering”) arising between various pieces of
code.

• Package Declaration: The package NAME declaration makes NAME
the current package, creating the package NAME if it doesn’t already
exist.

package NAME; # NAME is a bareword

• Package Scope:
NAME remains the current package until the next package declaration or
until the end of the innermost enclosing BLOCK, or until end of file (in
the case of modules).

• Default Package main:
The “default” package in which perl programs run is called main.

• Lookup (qualified):
Package variables may be accessed even from outside the package by “qual-
ifying” their identifiers: preceeding them with the name of the containing
package followed by two colons “::”:

$A::x = ’foo’; # sets $x in package ’A’

$B::x = ’bar’; # sets $x in package ’B’

$main::x = ’baz’; # sets $x in package ’main’

$::x = ’baz’; # ... ditto

• Lookup (unqualified):
All (non-lexical) unqualified variable and subroutine lookups are per-
formed in the (symbol tables of the) current package:

81

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlmod.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perltoot.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlobj.html

WS 2004-05 / Jurish 4 THE GORY DETAILS

package A; # package is now ’A’

$x = ’bar’; # sets $A::x

print "$x\n"; # prints value of $A::x

package B; # package is now ’B’

$x = ’baz’; # sets $B::x

print "$x\n"; # prints value of $B::x

• Nested Packages:
Packages may be nested. Nested package names are of the form OUTER::INNER,
where OUTER is the (possibly nested) “parent” package and INNER is
the identifier of the nested package. No special rules apply to lookup from
within nested packages.

package A::B::C; # package is now ’A::B::C’

$x = ’blop’; # sets $A::B::C::blop

• Symbol Tables:
The actual contents of a package’s symbol table can be accessed via the
hash %NAME:: for a package named NAME, which contains typeglob
values keyed by identifiers.

• Package Maintainence:
Packages may contain BEGIN and/or END blocks, which are evaluated at
compile-time and at exit-time, respectively. Such blocks can be useful for
package initialization and/or cleanup.

package foo;

BEGIN { require ’bar’; } # runs at compile time

END { cleanup_temp_files(); } # runs at exit time

• Autoloading:
If a package subroutine is called which does yet exist, but the package
defines a special subroutine called AUTOLOAD, then the package’s AUTOLOAD
will be called with the arguments passed to the “missing” subroutine, and
the package-global variable $AUTOLOADwill contain the fully qualified name
of the “missing” subroutine, as a string.

• Current Package
The fully qualified name of the current package is contained in the special
bareword “ PACKAGE ” (two leading and two trailing underscores). This
can be especially useful for error messages and for object methods.

• Tips and Pitfalls:

– Certain variables are always evaluated in package main; these include:
$!, $_, STDIN, STDOUT, STDERR, ARGV, ARGVOUT, ENV, INV, and
SIG.

– All package identifiers begin with an upper-case letter by convention.

82

4.7 Perl Modules etc. WS 2004-05 / Jurish

4.7.3 Modules

A Perl Module is just a package containing useful and re-useable abstract goodies
stored in a library file. Modules can be loaded at compile time with the use

pragma, and at runtime with the require function.

• Module Filenames:
A module for a package named PARENT::NAME should be stored in a
file NAME.pm in a directory LIBDIR/PARENTDIR, where

– LIBDIR is some system directory in Perl’s global module search path
(@INC).

– PARENTDIR is like PARENT except that package boundaries in
PARENT (indicated by double-colons “::”) are realized as directory
boundaries (indicated here by “/”).

For example, on a system whose Perl searches “/usr/local/lib/site perl”
for user modules, a module for the package Foo::Bar::Baz could be stored
in the file “/usr/local/lib/site perl/Foo/Bar/Baz.pm” and imported
into a program at compile time by:

use Foo::Bar::Baz;

and at runtime by:

require Foo::Bar::Baz;

• Symbol Sharing:
The strict distinction between symbol tables of different packages is indeed
safe and clean, but often not very comfortable, as it requires the user
either to frequently change the current package or to type often large and
unwieldy fully qualified package identifiers for subroutines, variables, etc.
Perl’s Exporter module provides a flexible mechanism by which package-
internal symbols may be shared between various packages.

• Exporting Symbols:

package MyPackage; # A package

require Exporter; # ... with symbols to share

@ISA

+ inheritance-related black magic (for now)

our @ISA = qw(Exporter);

@EXPORT

+ array of symbol identifiers to share by default

our @EXPORT = qw(mysub1);

@EXPORT_OK

+ list of symbol identifiers to share if requested

our @EXPORT_OK = qw($myscalar @myarray %myhash);

%EXPORT_TAGS

83

WS 2004-05 / Jurish 4 THE GORY DETAILS

+ hash of the form ($tag => \@symbols, ...) of symbols

to be shared by symbolic tag name ":$tag"

our %EXPORT_TAGS = (

mytag1 => [qw($myscalar @myarray)],

mytag2 => [qw(mysub1 %myhash)],

all => [@EXPORT, @EXPORT_OK],

);

• Importing Symbols (Defaults):
Assuming you have a package MyPackage as above which exports some
symbols, and you would like to use (some of) the exported symbols in
another package MyUser in an unqualified manner:

The symbols in @MyPackage::EXPORT are exported by default:

package MyUser;

use MyPackage; # load package & import symbols

The above code is equivalent to the runtime code:

package MyUser;

BEGIN {

require MyPackage; # load package

MyPackage->import(); # import default symbols

}

• Importing Symbols (Explicit Requests)
Suppose that from MyUser we wanted to access one or two symbols that
MyPackage exports, but which are not exported by default – i.e. symbols in
@MyPackage::EXPORT OK but not in @MyPackage::EXPORT. For such cases,
the LIST argument of the use MODULE LIST pragma is extremely use-
ful:

package MyUser;

use MyPackage qw($myvar @myarray);

or:

package MyUser;

BEGIN {

require MyPackage;

MyPackage->import(qw($myvar @myarray));

}

Note that in the above cases, only the requested symbols are imported,
and not the default symbols, if there were any.

• Importing Symbols (Tags):
If, as above, the package MyPackage exports groups of symbols under
some symbolic tag name TAG (a key in %MyPackage::EXPORT TAGS), then
the tag name preceeded by a symbol colon “:” can appear in the LIST
argument to use or import in order to import all of the symbols assigned
to TAG by MyPackage:

84

4.7 Perl Modules etc. WS 2004-05 / Jurish

package MyUser;

use MyPackage qw(:mytag1 :mytag2);

or:

package MyUser;

BEGIN {

require MyPackage;

MyPackage->import(qw(:mytag1 :mytag2));

}

• The CORE package
Builtin Perl functions (such as print, chdir, etc.) may be overridden
by a subroutine within a given package, and the overrides may even be
propagated out of the package by means of a symbol-sharing mechanism.
The original version of any built-in Perl function should always be available
in the package CORE however:

package Foo;

undef = print(@args)

+ prefixes the current package name and passes

@args to Perl’s builtin print() function.

sub print {

CORE::print(__PACKAGE__ , ": ", @_);

}

• Tips, Caveats, etc.

– Avoid exporting any symbols by default, since that pretty much de-
feats the purpose of packages as “safe” havens for your identifiers.

– Generally try to avoid overriding builtin Perl functions – you can
still get at them using fully qualified names in the CORE package, but
overridden builtin names are usually very difficult to read.

– When writing your own modules, use the ExtUtils::MakeMaker

module to create a portable and intuitive build environment. See
the ExtUtils::MakeMaker(3pm) module manpage for details.

4.7.4 Objects

• Terminology:

– Class (noun): a collection of things-in-the-world (in the case of pro-
gramming, a collection of data-in-the-program) which share a com-
mon set of properties or behaviors.

– Object (noun): an instance of a class: in programming, a single
(possibly complex) datum with some properties or behaviors given
by its associated class.

85

http://cpan.uwinnipeg.ca/module/ExtUtils::MakeMaker

WS 2004-05 / Jurish 4 THE GORY DETAILS

– Method (noun): in programming, a chunk of code implementing
some property or behavior common to a class of objects, either as
a function of the class itself (a class method) or as a function of a
single instance of that class (a object method or instance method).

Common class methods include constructors, which create and re-
turn new object instances, and destructors, which are responsible for
destroying object instances which are no longer needed.

– Parent Class (noun phrase): comparative term indicating a “more
general” class or superclass, also known as a base class. Compare
child class.

– Child Class (noun phrase): comparative term indicating a “more
specific” class or subclass, also known as a derived class. Compare
parent class.

– Inherit (verb): to receive an item, property, or behavior by virtue of
one’s genealogy – in programming, to receive access to a method de-
fined for a parent class (also indirectly, e.g. defined for a grandparent
class, etc.).

• Perl Classes
Perl classes are just packages.

package Rectangle; # declares a class ’Rectangle’

• Perl Objects
Perl objects are just references which have been bless()ed into a class
package.

my $obj = {}; # create a reference

bless $obj, ’Rectangle’; # ... bless it into an object

• Perl Methods
Perl methods are just subroutines declared in a class package which take
as their first argument either a class name (class methods) or an object
(instance methods).

– Perl Constructors
Perl constructors are conventionally called new. They should create
a reference, bless() it, and return the blessed reference:

$rect = Rectangle->new($width,$height)

+ create and return a new rectangle

sub new {

my ($class,$width,$height) = @_;

return bless({

width => $width,

height => $height,

}, $class);

}

– Perl Destructors
Perl destructors are always called DESTROY, and receive as their only
argument the object instance to be destroyed. They may perform

86

4.7 Perl Modules etc. WS 2004-05 / Jurish

user-defined cleanup operations, such as breaking circular references
within the object.

undef = DESTROY($rect)

+ destructor

sub DESTROY {

my $obj = shift;

print "$obj is being cast into the void.\n";

}

$area = $rect->area();

+ returns area of the rectangle object $rect

sub area {

my $self = shift;

return $self->{width} * $self->{height};

}

• Perl Inheritance
Inheritance in Perl is implemented by means of the special package array
@ISA, which holds in every child class package the names of the subclass’s
parent classes:

package Square; # declare a class ’Square’

@ISA = qw(Rectangle); # ...inheriting from ’Rectangle’

$sqr = Square->new($width)

+ create and return a new Square object

sub new {

my ($class,$width) = @_;

... explicitly crafted call to Rectangle::new()

return Rectangle::new($class, $width, $width);

}

DESTROY() : inherited from ’Rectangle’

area() : inherited from ’Rectangle’

For the truly gory details on inheritance search order and other such
things, see the perlobj(3pm) module manpage .

• Using Perl Methods
Perl methods are most intuitively called with the help of the “->” operator:

CLASS OR INSTANCE -> METHODNAME (ARGS)

For example:

my $r = Rectangle->new(42, 2);

my $s = Square->new(10);

print

("Area of r is: ", $r->area(), "\n",

"Area of s is: ", $s->area(), "\n");

87

http://cpan.uwinnipeg.ca/module/perlobj

WS 2004-05 / Jurish 4 THE GORY DETAILS

There is another syntax available for calling Perl methods, the so-called
“indirect object” syntax, but I don’t recommend it.

88

WS 2004-05 / Jurish

5 Miscellaneous Bits

5.1 Efficiency

TMTOWTDI (There’s More Than One Way To Do It)

[WCS96]

NAWTDIACE (Not All Ways To Do It Are Created Equal)

– the author of this document

The most important aspect of programming is (of course) getting your program
to do whatever it is that it is intended to do. Later (or perhaps right away),
you may wish to optimize your program for speed and/or space efficiency. I find
that it is generally a good idea to do some “optimization” right from the start,
which saves me some work later. Also, there are other flavors of “efficiency”
not often discussed by theoreticians58 which are best observed right from the
outset.

This Section contains some brief descriptions of several varieties of “efficiency”,
along with some rules of thumb you can follow to make your Perl programs more
efficient. [WCS96, Chapter 8] contains many more of these. Often, these rules
conflict with one another – in such cases:

Them’s the breaks. If programming were easy, they wouldn’t need
anything as complicated as a human being to do it, now would they?

[WCS96, p. 537]

5.1.1 Time Efficiency

Maximizing time efficiency simply means minimizing the time for which your
program runs. This may seem unimportant for a program with an average
lifetime of 0.004 seconds, but if that program is a CGI on a busy server which
might get called 500 times in a second, you have a problem.

Generally, maximizing time efficiency means:

• Burn fewer CPU cycles

• Do less I/O

Idle Pontification:
I personally tend to rate time efficiency as very important, usually overriding
the demands of space efficiency, at least until I run out of RAM.59

Rules of Thumb:

58 . . . who tend to behave as if O = O(n) explains everything you need to know about a
program.

59 Yes, this has happened.60
60More often than I would like to think about, thank you.

89

WS 2004-05 / Jurish 5 MISCELLANEOUS BITS

• Use as few loops as possible – often, you can eliminate a loop by using list
context.

• Only use nested loops if you absolutely must.

• Don’t use recursion – there’s usually a way to compute every recursive
function iteratively.

• Use foreach loops instead of for loops over index variables.

• Use hashes instead of array searches.

• Use the builtin Perl functions – they’re usually quite fast.

• Don’t use the string form eval, especially inside a loop.

• Don’t call too many user-defined subroutines.

• Just use fewer elementary operations.

5.1.2 Space Efficiency

Maximizing space efficiency simply means minimizing the amount of memory
(especially RAM) that your program occupies. Again, this may seem unimpor-
tant for a program with an average “footprint” of 4 KB, but many program
instances or more input data can often cause space efficiency to become ex-
tremely important.

Generally, maximizing space efficiency means:

• Use less RAM

• Store less data

Idle Pontification:
I personally tend to rate space efficiency as very important, but usually prefer
time efficiency when the two conflict.

Rules of Thumb:

• Use fewer variables – actually, this helps with time efficiency, too.

• Don’t store data (such as input) in an array when a loop over your source
data (your input stream(s)) would suffice.

• Prefer numbers to strings for scalar values.

• Use iterators, especially each.

• undef variables when they are no longer needed.

90

5.1 Efficiency WS 2004-05 / Jurish

5.1.3 Programmer Efficiency

Maximizing programmer efficiency just means minimizing the amount of work
that you, the programmer, have to do in order to get your program working.

Generally, this means:

• Do more work with less code.

Idle Pontification:
Personally, I tend to rate programmer efficiency lower than just about every
other flavor, except when I’m just trying to find some snippet of code that does
what I need it to do in a hurry – i.e. whenever I really need Perl.

Rules of Thumb:

• Use the modules from CPAN – the best program is one you don’t have to
write yourself.

• Use the default variable $_ – save your carpal tunnels!

• Use funky command-line switches such as -p or -n.

• Use whatever you think of first.

5.1.4 Maintainer Efficiency

Maximizing maintainer efficiency just means making your program easy to un-
derstand.

Generally, this means:

• Write readable code.

• Write modular (re-usable) code.

• Document.

• Document?

• Document!
Idle Pontification:
I personally tend to rate maintainer efficiency very highly indeed – often even
overriding the demands of time- and space-efficiency, when they conflict.61

Rules of Thumb:

• Use meaningful variable names.

• Use meaningful subroutine names.

61 This is largely because I have to maintain my own code.

91

WS 2004-05 / Jurish 5 MISCELLANEOUS BITS

• Use meaningful loop labels.

• Don’t use global variables.

• Comment your code.

• Document your data-structure conventions, at the very least with com-
mented initial declarations.

• Document your subroutines’ argument types and return values, at the
very least with commented subroutine declarations.

• Name your subroutine parameters using my.

• Use round parentheses for clarity – for grouping sub-lists, as well as for
subroutine calls.

• Close your files when you are done with them.

• Use packages, modules, and classes.

5.1.5 Porter Efficiency

Maximizing porter efficiency just means minimizing the amount of work that
you (or someone else) have (has) to do in order to get your program to run on
another platform. See the perlport(f) manpageor details.

Generally, this means:

• Avoiding platform-specific hacks.

• Avoiding binary encodings.

Idle Pontification:
Generally, I tend not to think much about porter efficiency – then again, I have
never attempted to port my Perl programs to a non-UNIX operating system.62

Rules of Thumb:

• Avoid functions that aren’t implemented everywhere.

• Don’t try to send binary data over a pipe.

• Don’t use binary data and expect them to work the same everywhere.

• If you must use binary data, pick a byte-order (for pack() and unpack())
and stick with it.

• Use require $VERSION to ensure that the porter is running a sufficiently
new version of the Perl interpreter.

• Put in the “shebang” line (#!/usr/bin/perl) as the first line of your
script, even if your platform does not support it.

62 Bad programmer. No biscuit.

92

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlport.html

5.1 Efficiency WS 2004-05 / Jurish

5.1.6 User Efficiency

Maximizing user efficiency just means writing programs that are intuitive and
easy to use.

Generally, this means:

• Not confusing your user(s).63

• Documenting user-level functionality.

Idle Pontification:
I personally tend to rate user efficiency quite highly; then again, I myself tend
to be the primary user of my own programs.

Rules of Thumb:

• Use sensible default values, but allow the user to change them.

• Use the Getopt and/or Getopt::Long modules to parse command-line
options.

• Use prompts to nudge beginning (or forgetful) users along.

• Allow advanced users to skip the prompts.

• Check for error conditions and produce helpful error messags with warn()

and die().

• Allow input to come from either STDIN or from files on the command-line,
at the user’s option.

• Allow output to go either to a file or to STDOUT, at the user’s option.

• Be nice.

63 Of course, you must have some idea of who your users are and what they expect in order
to meet this criterion.

93

WS 2004-05 / Jurish 5 MISCELLANEOUS BITS

5.2 Coding With Style

This Section contains some rules of thumb to follow when writing your own
Perl programs. While stylistic issues such as these are to a large extent aes-
thetic issues, they also have a significant influence on the maintainability and
re-usability of your code: it is much easier to debug, maintain, and re-use pretty
code than ugly code.

See [WCS96, Chapter 8] for more suggestions.

5.2.1 Indentation

• Blocks
Indent the contents of every block by a constant amount – usually about
3 characters. Ensure that the closing brace for every block is at the same
indentation level as the line containing the opening brace, which should
be the same level as the keyword (if any) requiring the block.

Pretty Not So Pretty

if ($foo) {

bar();

}

if ($foo){

bar();

}

if ($foo)

{

bar();

}

if ($foo)

{

bar();

}

• Function Arguments
When function or subroutine arguments extend over more than one line,
use round parentheses “()” around your subroutine’s arguments and indent
the later lines to one character past the column of the opening “(” of that
subroutine:

Pretty Not So Pretty

foo($bar,

$baz);

foo($bar,

$baz);

• Multiline Statements
When simple statements continue over more than one line, indent later
lines at least 2-3 characters. When multiline statements are complex ex-
pressions, break lines at sub-expression boundaries and indent according
to sub-expression nesting level:

94

5.2 Coding With Style WS 2004-05 / Jurish

Pretty Not So Pretty

open(FOO,"<foo.txt")

or die("oops: $!");

open(FOO,"<foo.txt")

or die("oops: $!");

if (!$x || ($x eq $y

&&

$y eq $z))

if (!$x || ($x eq $y

&& $y eq $z))

5.2.2 Blank Lines

• Statements
Start a new line for every statement.

• Declarations
Use some blank lines between declarations (i.e. subroutine declarations)
and the following code – especially if that code is another subroutine
declaration!

• Conceptual Grouping
Use blank lines to separate portions of your code into conceptual group-
ings.

5.2.3 Comments

• File Comments
At the top of each file, add comments which name you as the author, and
which briefly describe the program and what it does – for example:

#!/usr/bin/perl -w

#

File: codecounter.perl

Author: Bryan Jurish <moocow@ling.uni-potsdam.de>

Description:

+ Report relative amounts of code, comments,

whitespace, and PODs in perl source file(s).

Usage:

$0 [FILE(s)...]

• Subroutine Comments
Introduce each subroutine with some comments that describe its argu-
ments and return value:

$sum = add(@numbers);

+ returns the sum of the elements of @numbers

+ undefined elements are mapped to 42.

95

WS 2004-05 / Jurish 5 MISCELLANEOUS BITS

• Conceptual Groups
Separate portions of your program (groups of subroutine declarations, etc.)
from one another by comments. I like to use the ”=” and ”-” characters
to make long (60–70 characters) horizontal lines for larger groups, using
shorter lines for smaller conceptual groups:

#==

Common Subroutines

#==

#-----------------------------

I/O subs

#-----------------------------

undef = foo($bar);

+ just a dummy sub

sub foo {

my ($bar) = shift;

#-- sanity check

return undef if (!defined($bar));

#-- the actual guts

return baz($bar) if (blippo(bonk()));

return $bar;

}

96

5.3 When Things Go Wrong WS 2004-05 / Jurish

5.3 When Things Go Wrong

First of all . . . Don’t Panic!
Perl is a nightmarishly complex language to parse64. It is therefore a truly as-
tounding fact that Perl is capable of producing such a broad range of diagnositic
warning and error messages meant to help you, the programmer, in perfecting
and debugging your code.

5.3.1 Grokking the Diagnostics

Grok (verb): To understand and appreciate, usually in a global sense.

1. Read the error message. Carefully.

2. If you haven’t already done so, turn on the “-w” switch to the perl inter-
preter, or set the “$ˆW” variable to a true value, and see if the additional
information gives you any clues.

3. Look at the line of your code mentioned in the error message – do you see
any obvious causes? Typical candiates include: typographical errors (“ty-
pos”), missing commas, missing semicolons, missing parentheses, missing
“$”, “@”, or “%” characters. If you don’t see anything on the line men-
tioned, check the surrounding context (statement, block, subroutine, etc.).

4. Consult the perldiag(1) manpage to find your error message, and see if
the information there gives you any additional clues.

5. Try running your program under the Perl debugger (see Section 5.3.4) Set
a breakpoint shortly before the line that causes the error, and examine
(“x”) the relevant variables to see if their values are what you expect them
to be.

6. Fiddle around with it. The debugger is a good place to try out small
variations of single lines of code in the context of a running program.

7. Go to Step 1.

5.3.2 Common Warnings

The following are some common Perl warnings, using printf() style escapes
(such as “%s”). These warnings only appear if you ran perl with the “-w” switch
(or if you have set “$ˆW” to a true value). Their presence is not fatal to Perl,
but might indicate that all is not well with your program.

• Deep recursion on subroutine “%s”

Some subroutine called itself more than 100 times – did you code the right
termination condition?

64 Not as nightmarishly complex as, say, English, but pretty nightmarishly complex nonethe-
less.

97

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perldiag.html

WS 2004-05 / Jurish 5 MISCELLANEOUS BITS

• %s (...) interpreted as function

Usually not really a problem. See the perlop(1) manpage for details.

• Name ”%s::%s” used only once: possible typo

You have coded a useless variable – did you mistype its name?

• Unquoted string ”%s” may clash with future reserved word
Did you forget quotes around a string? Or mistype a subroutine name?
Or forget the “$” prefix for a scalar variable?

• Useless use of %s in void context
Perl failed to parse your program as you intended. Usually a precedence
problem – try some parentheses.

• Use of uninitialized value
You tried to perform some operation on a scalar whose value is undef.
This is legal, and often things will work out alright, but you should think
about giving your variable some defined value.

5.3.3 Perl Errors

Here are some common Perl error messages, which will cause the Perl interpreter
to terminate.

• BEGIN failed–compilation aborted

Usually the result of an error in some package your program uses.

• Can’t find string terminator %s anywhere before EOF

You seem to have forgotten the closing quotes on string literal.

• Can’t locate %s

You probably tried to use a module which Perl couldn’t find – do you
have it installed? If so, check @INC; if not, check CPAN.

• Can’t modify %s in %s

You overtaxed Perl’s capabilities. Assigning to a temporary variable usu-
ally solves this one.

• %s found where operator expected

Probably the most common error message I see, this generally means you
forgot a semicolon or a comma. Sometimes you will see the additional
message:

(Do you need to predeclare %s?)

which means that Perl is interpreting “%s” as a subroutine – maybe you
forgot a “$” or an “@” on some variable name?

• Might be a runaway multi-line %s string starting on line %d

Indicates that the previous error might have been caused by a missing
string-delimiter such as ’ or ”.

98

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlop.html

5.3 When Things Go Wrong WS 2004-05 / Jurish

• Missing right curly or square bracket

You probably forgot to close all of your blocks. Use an editor such as
(x)emacs or vim which matches parentheses for you, or count more care-
fully.

• Search pattern not terminated

You may have forgotten to terminate a regex pattern. Forgetting the
leading “$” on a variable “$m” could cause this error.

• Undefined subroutine &%s called

You tried to call a subroutine which you haven’t defined. Possibly a typo.

5.3.4 The Perl Debugger

You can run the Perl debugger by using the “-d” switch to the Perl interpreter.
I personally prefer to use an editor such as (x)emacs with builtin support for the
perl debugger (in xemacs, right click on the buffer containing your perl code file,
pick “debugger”, and type the command-line into the minibuffer), so I can easily
edit and debug my programs in parallel, and get pretty syntax highlighting and
auto-indentation in the bargain.

Some common debugger commands include:

Command Description

h print a helpful summary of known debugger commands
q exit the debugger

b LINE set a breakpoint at LINE
c continue until the next breakpoint
l list current line
s step into next line
n next – step over subroutines

x EXPR examine expression EXPR in list context
EXPR evaluate any perl expression

For more information on the perl debugger, see the perldebtut(1) manpage
and/or the perldebug(1) manpage.

99

http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perldebtut.html
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perldebug.html

WS 2004-05 / Jurish B A BRIEF REVIEW OF TREE DOMAINS

A A Brief Review of Set Theory

• Set
A set is simply a collection of objects (called the elements of the set) in
which a given element may be present at most once. We write x ∈ S

to indicate that the object x is an element of the set S. Typically, two
basic forms of set-designation are recognized: explicit enumeration and
restriction.

• Set Enumeration
The set containing all and only the objects x1, . . . , xn is representend by
{x1, . . . , xn}.

• Set Restriction
{x | P (x)} represents the set containing all and only those objects x which
satisfy the logical predicate P .

• Empty Set
The empty set is the set containing no objects, often written ∅. It can be
defined in terms of enumeration as: ∅ := {}.

• Set Union
S1 ∪ S2 := {x | x ∈ S1 or x ∈ S2}

• Set Difference
S1 − S2 := {x | x ∈ S1 and x 6∈ S2}

• Set Intersection
S1 ∩ S2 := S1 − (S1 − S2)

= {y | y ∈ S1 and y ∈ S2}

• Subset Relation
S1 ⊆ S2 :⇔ ∀x(x ∈ S1 ⇒ x ∈ S2)

• Set Identity
Two sets S1 and S2 are taken to be identical if they contain exactly the
same objects:
S1 = S2 :⇔ S1 ⊆ S2 and S2 ⊆ S1

⇔ ∀x(x ∈ S1 ⇔ x ∈ S2)

B A Brief Review of Tree Domains

• Tree Nodes
A tree domain is defined with respect to the free monoid 〈U, ◦〉, where U

is the set of all finite strings of positive numbers separated by dots “.” and
◦ is the concatenation operation. The identity element of the free monoid
U is the empty string ε. The elements of U can be understood as “node
identifiers” in concrete trees.

• Node Dominance Relation
The relation E: U ×U is a binary dominance relation on node identifiers,
defined as: ∀u, v ∈ U : u E v iff (∃w ∈ U : v = u.w)

100

WS 2004-05 / Jurish

• Node Precedence Relation
The relation ≺: U ×U is a binary precedence relation on node identifiers,
defined as: ∀u, v ∈ U : u ≺ v iff ∃x, y, z ∈ U, ∃i, j ∈

�
: u = x.i.y & v =

x.j.z & i < j

• Tree Domain
A tree domain is a finite subset D of U for which the following conditions
hold:

1. Dominance Closure

∀u, v ∈ U : ((v ∈ D & u E v) ⇒ u ∈ D)

2. Strict Precedence

∀u ∈ U, ∀i, j ∈
�

: ((u.j ∈ D & 1 ≤ i ≤ j) ⇒ u.i ∈ D)

• Labelled Tree
A labelled tree is a triple 〈D, Σ, L〉 where:

– D is a tree domain, a set of node identifiers.

– Σ is a finite node label alphabet.

– L : D → Σ is a total node-labelling function.

For the purposes of the following definitions, let t = 〈D, Σ, L〉 be a labelled
tree, let u ∈ U be a (potential) node identifier, and let i ∈

�
be a natural

number.

• Tree Root Node
root(t) = ε

• Node Daughters
daughters(t, u) = {u.i ∈ (D ◦

�
) | u.i ∈ D}

• Node Mother
mother(t, u.i) = u

• Tree Leaves
leaves(t) = {u ∈ D | daughters(t, u) = ∅}

• Example:

In the following example, node identifiers are shown boxed .

D = {ε, 1, 2, 1.1, 1.2, 2.1}
Σ = {S, NP, VP, a, man, walks}

L =































ε 7→ S
1 7→ NP,

2 7→ VP,

1.1 7→ a,

1.2 7→ man,

2.1 7→ walks































101

WS 2004-05 / Jurish B A BRIEF REVIEW OF TREE DOMAINS

ε

S

1
NP

1.1
a

1.2
man

2
VP

2.1
walks

An alternative formal definition of labelled trees can be found in Barbara Partee’s lecture notes.65

65 Warning: The “nontangling condition” on page 3 should be:

(∀w,x, y, z ∈ N)((〈w, x〉 ∈ P & 〈w, y〉 ∈ D & 〈x, z〉 ∈ D) → 〈y, z〉 ∈ P)

102

http://www-unix.oit.umass.edu/~partee/409/Nov19_Lec24.pdf

REFERENCES WS 2004-05 / Jurish

References

[SC97] Randal L. Schwartz and Tom Christiansen. Learning Perl, Second

Edition. O’Reilly & Associates, Köln, 1997.

[WCS96] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming

Perl, Second Edition. O’Reilly & Associates, Köln, 1996.

103

	Course Syllabus
	Administrivia
	Prerequisites
	New Versions of This Document
	Questions
	Grading Policies
	Blocks
	Problems
	Points
	Deadlines
	Revisions
	Platforms
	Delivery
	Format
	Collective Work

	Acquiring Perl
	Perl Resources
	Shameless Plugs
	Copying
	FAQs and Factoids
	Uses of Perl

	The Mollusc of Your Choice
	The Very Basics: hello.perl
	Running perl
	Compiling vs. Interpreting
	Program Elements

	Scalars: hello-name
	Scalar Variables
	Program Elements

	Lists and Arrays: hello-folks
	Lists and Arrays
	Basic Array Operations
	Program Elements
	Black Magic

	Hashes: hello-dialect
	Hashes and Associative Arrays
	Basic Hash Operations
	Program Elements

	Filehandles: hello-file.perl
	Streams and Filehandles
	Basic Filehandle Operations
	Program Elements

	Subroutines: hello-sub
	Subroutines and Other Animals
	Program Elements

	The Gory Details
	Perl Syntax
	Comments and Whitespace
	Terms and Values
	Expressions
	Statements
	Blocks
	Declarations
	Control Structures

	Perl Datatypes
	Scalars
	Context
	Lists and Arrays
	Hashes
	Subs and Code
	Typeglobs and Filehandles
	Regular Expression Patterns
	References

	Perl Control Structures
	Conditionals
	Loops
	Jumps
	Subroutines
	Declarators and Scope
	Errors and Warnings
	Dynamic Evaluation
	External Code

	Perl I/O
	Filehandles
	Files
	Pipes
	IO::File
	Sockets

	Perl Regular Expressions
	Friends and Relations
	Common Uses
	Single-Character Patterns
	Multi-Character Patterns
	Grouping Patterns
	Matching Miscellany

	Perl References
	What is a Reference?
	Why References?
	Symbolic References
	Hard References
	Reference Counts and Memory Management
	Stringification

	Perl Modules etc.
	What's it All About?
	Packages
	Modules
	Objects

	Miscellaneous Bits
	Efficiency
	Time Efficiency
	Space Efficiency
	Programmer Efficiency
	Maintainer Efficiency
	Porter Efficiency
	User Efficiency

	Coding With Style
	Indentation
	Blank Lines
	Comments

	When Things Go Wrong
	Grokking the Diagnostics
	Common Warnings
	Perl Errors
	The Perl Debugger

	A Brief Review of Set Theory
	A Brief Review of Tree Domains
	References

