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In this letter we present a very general method to extract information from a generic string of
characters, e.g. a text, a DNA sequence or a time series. Based on data-compression techniques, its
key point is the computation of a suitable measure of the remoteness of two bodies of knowledge.
We present the implementation of the method to linguistic motivated problems, featuring highly
accurate results for language recognition, authorship attribution and language classification. (PACS:
89.70.+c,05.)

Many systems and phenomena in nature are often rep-
resented in terms of sequences or strings of characters.
In experimental investigations of physical processes, for
instance, one typically has access to the system only
through a measuring device which produces a time record
of a certain observable, i.e. a sequence of data. On the
other hand other systems are intrinsically described by
string of characters, e.g. DNA and protein sequences,
language.

When analyzing a string of characters the main ques-
tion is to extract the information it brings. For a DNA se-
quence this would correspond to the identification of the
sub-sequences codifying the genes and their specific func-
tions. On the other hand for a written text one is inter-
ested in understanding it, i.e. recognize the language in
which the text is written, its author, the subject treated
and eventually the historical background.

The problem cast in such a way, one would be tempted
to approach it from a very interesting point of view: that
of information theory [1, 2]. In this context the word
information acquires a very precise meaning, namely that
of the entropy of the string, a measure of the surprise the
source emitting the sequences can reserve to us.

As it is evident the word information is used with dif-
ferent meanings in different contexts. Suppose now for
a while to be able to measure the entropy of a given se-
quence (e.g. a text). Is it possible to obtain from this
measure the information (in the semantic sense) we were
trying to extract from the sequence? This is the question
we address in this paper.

In particular we define in a very general way a concept
of remoteness (or similarity) between pairs of sequences
based on their relative informatic content. We devise,
without loss of generality with respect to the nature of
the strings of characters, a method to measure this dis-
tance based on data-compression techniques. The specific
question we address is whether this informatic distance
between pairs of sequences is representative of the real
semantic difference between the sequences. It turns out
that the answer is yes, at least in the framework of the
examples on which we have implemented the method.

We have chosen for our tests some textual corpora and
we have evaluated our method on the basis of the re-
sults obtained on some linguistic motivated problems. Is
it possible to automatically recognize the Language in
which a given text is written? Is it possible to automat-
ically guess the author of a given text? Last but not
the least, it is possible to identify the subject treated in
a text in a way that permits its automatic classification
among many other texts in a given corpus? In all the
cases the answer is positive as we shall give evidences in
the following.

Before entering in the details of our method let us
briefly recall the definition of entropy which is closely
related to a very old problem, that of transmitting a mes-
sage without loosing information, i.e. the problem of the
efficient encoding [3].

The problem of the optimal coding for a text (or an
image or any other kind of information) has been enor-
mously studied in the last century. In particular Shan-
non [1] discovered that there is a limit to the possibility
to encode a given sequence. This limit is the entropy of
the sequence. There are many equivalent definitions of
entropy but probably the best definition in this context is
the Chaitin - Kolmogorov entropy [4, 5, 6, 7]: the entropy
of a string of characters is the length (in bits) of the small-
est program which produces as output the string. This
definition is really abstract. In particular it is impossible,
even in principle, to find such a program. Nevertheless
there are algorithms explicitly conceived to approach this
theoretical limit. These are the file compressors or zip-
pers. A zipper takes a file and try to transform it in the
shortest possible file. Obviously this is not the best way
to encode the file but it represents a good approxima-
tion of it. One of the first compression algorithms is the
Lempel and Ziv algorithm (LZ77) [8] (used for instance
by gzip, zip and Stacker). It is interesting to briefly re-
call how it works. The LZ77 algorithm finds duplicated
strings in the input data. More precisely it looks for the
longest match with the beginning of the lookahead buffer
and outputs a pointer to that match given by two num-
bers: a distance, representing how far back the match
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starts, and a length, representing the number of match-
ing characters. For example, the match of the sequence
σ1 ... σn will be represented by the pointer (d, n), where
d is the distance at which the match starts. The match-
ing sequence will be then encoded with a number of bits
equal to (log2 (d) + log2 (n)): i.e. the number of bits nec-
essary to encode d and n. Roughly speaking the average
distance between two consecutive σ1 ... σn is of the or-
der of the inverse of its occurrence probability. Therefore
the zipper will encode more frequent sequences with few
bytes and will spend more bytes only for rare sequences.
The LZ77 zipper has the following remarkable property:
if it encodes a sequence of length L emitted by an ergodic
source whose entropy per character is s, then the length
of the zipped file divided by the length of the original
file tends to s when the length of the text tends to ∞
(see [8], [13] and reference therein). In other words it
does not encode the file in the best way but it does it
better and better as the length of the file increases.

The compression algorithms provide then a powerful
tool for the measure of the entropy and the fields of ap-
plications are innumerous ranging from theory of Dynam-
ical Systems [11] to Linguistics and Genetics [12]. The
first conclusion one can draw is therefore about the pos-
sibility to measure the entropy of a sequence simply by
zipping it. In this paper we exploit this kind of algo-
rithms to define a concept of remoteness between pairs
of sequences.

An easy way to understand where our definitions come
from is to recall the notion of relative entropy whose
essence can be easily grasped with the following example.
Let us consider two ergodic sources A and B emitting se-
quences of 0 and 1: A emits a 0 with probability p and 1
with probability 1− p while B emits 0 with probability q
and 1 with probability 1 − q. As already described, the
compression algorithm applied to a sequence emitted by
A will be able to encode the sequence almost optimally,
i.e. coding a 0 with− log2 p bits and a 1 with− log2(1−p)
bits. This optimal coding will not be the optimal one for
the sequence emitted by B. In particular the entropy per
character of the sequence emitted by B in the coding op-
timal for A will be −q log2p − (1 − q) log2(1 − p) while
the entropy per character of the sequence emitted by B
in its optimal coding is −q log2q − (1 − q) log2(1 − q).
The number of bits per character waisted to encode the
sequence emitted by B with the coding optimal for A is
the relative entropy (see Kullback-Leibler [10]) of A and
B, SAB = −q log2

p
q
− (1− q) log2

1−p
1−q .

There exist several ways to measure the relative en-
tropy (see for instance [13, 14]). One possibility is of
course to follow the recipe described in the previous ex-
ample: using the optimal coding for a given source to
encode the messages of another source. The path we fol-
low is along this stream. In order to define the relative
entropy between two sources A and B we extract a long
sequence A from the source A and a long sequence B as

well as a small sequence b from the source B. We create a
new sequence A+ b by simply appending b after A. The
sequence A+b is now zipped, for example using gzip, and
the measure of the length of b in the coding optimized
for A will be ∆Ab = LA+b − LA, where LX indicates the
length in bits of the zipped file X. The relative entropy
SA per character between A and B will be estimated by

SAB = (∆Ab −∆Bb)/|b| (1)

where |b| is the number of characters of the sequence b
and ∆Bb/|b| = (LB+b − LB)/|b| is an estimate of the
entropy of the source B.

Translated in a linguistic framework, if A and B are
texts written in different languages, ∆Ab is a measure of
the difficulty for a generic person of mother tongue A
to understand the text written in the language B. Let
us consider a concrete example where A and B are two
texts written for instance in English and Italian. We
take a long English text and we append to it an Italian
text. The zipper begins reading the file starting from the
English text. So after a while it is able to encode op-
timally the English file. When the Italian part begins,
the zipper starts encoding it in a way which is optimal
for the English, i.e. it finds all most of the matches in
the English part. So the first part of the Italian file is
encoded with the English code. After a while the zipper
“learns” Italian, i.e. it tends progressively to find most
of the matches in the Italian part with respect to the En-
glish one, and changes its rules. Therefore if the length
of the Italian file is “small enough” [15], i.e. if most of
the matches occur in the English part, the expression
(1) will give a measure of the relative entropy. We have
checked this method on sequences for which the relative
entropy is known, obtaining an excellent agreement be-
tween the theoretical value of the relative entropy and
the computed value [15]. The results of our experiments
on linguistic corpora turned out to be very robust with
respect to large variations on the size of the file b (typi-
cally 1 − 15 Kilobytes (Kb) for a typical size of file A of
the order of 32− 64 Kb).

These considerations open the way to many possible
applications. Though our method is very general [16] in
this paper we focus in particular on sequences of charac-
ters representing texts, and we shall discuss in particular
two problems of computational Linguistics: the context
recognition and the classification of sequences corpora.

Language recognition: Suppose we are interested
in the automatic recognition of the language in which a
given text X is written. The procedure we use consider
a collection of long texts (a corpus) in as many as possi-
ble different (known) languages: English, French, Italian,
Tagalog . . . . We simply consider all the possible files ob-
tained appending the a portion x of the unknown file X
to all the possible other files Ai and we measure the dif-
ferences LAi+x − LAi . The file for which this difference
is minimal will select the language closest to the one of
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AUTHOR N. of texts N. of successes 1 N. of successes 2

Alighieri 8 8 8

D’Annunzio 4 4 4

Deledda 15 15 15

Fogazzaro 5 4 5

Guicciardini 6 5 6

Macchiavelli 12 12 12

Manzoni 4 3 4

Pirandello 11 11 11

Salgari 11 10 10

Svevo 5 5 5

Verga 9 7 9

TOTALS 90 84 89

TABLE I: Authorship attribution: For each author de-
picted we report the number of different texts considered and
two measures of success. Number of success 1 and 2 are the
numbers of times another text of the same author was ranked
in the first position or in one of the first two positions respec-
tively.

the X file, or exactly its language, if the collection of
languages contained this language. We have considered
in particular a corpus of texts in 10 official languages of
the European Union (UE) [17]: Danish, Dutch, English,
Finnish, French, German, Italian, Portuguese, Spanish
and Swedish. Each text of the corpus played in turn the
role of the text X and all the others the role of the Ai.
Using in particular 10 texts per language (giving a to-
tal corpus of 100 texts) we have obtained that for any
single text the method has recognized the language: this
means that for any text X the text Ai for which the dif-
ference LAi+x −LAi was minimum was a text written in
the same language. Moreover it turned out that ranking
for each X all the texts Ai as a function of the difference
LAi+x − LAi , all the texts written in the same language
were in the first positions. The recognition of the lan-
guage works quite well for length of the X file as small
as 20 characters.

Authorship attribution: Suppose in this case to be
interested in the automatic recognition of the author of a
given text X. We shall consider as before a collection, as
large as possible, of texts of several (known) authors all
written in the same language of the unknown text and we
shall look for the text Ai for which the difference LAi+x−
LAi is minimum. In order to collect a certain statistics
we have performed the experiment using a corpus of 90
different texts [18], using for each run one of the texts
in the corpus as unknown text. The results, shown in
Table , feature a rate of success of 93.3%. This rate is the
ratio between the number of texts whose author has been
recognized (another text of the same author was ranked
as first) and the total number of texts considered.

The rate of success increases by considering more re-

Romani Balkan [East Europe]
Occitan−Auvergnat [France]
Walloon [Belgique]
Corsican [France]
Italian [Italy]
Sammarinese [Italy]
Rhaeto Romance [Switzerland]
Friulian [Italy]
French [France]
Catalan [Spain]
Occitan [France]
Asturian [Spain]
Spanish [Spain]
Galician [Spain]
Portuguese [Portugal]
Sardinian [Italy]
Romanian [Romania]
Romani Vlach [Macedonia]
English [UK]
Maltese [Malta]
Welsh [UK]
Irish Gaelic [Eire]
Scottish Gaelic [UK]
Breton [France]
Faroese [Denmark]
Icelandic [Iceland]
Swedish [Sweden]
Danish [Denmark]
Norwegian Bokmal [Norway]
Norwegian Nynorsk [Norway]
Luxembourgish [Luxembourg]
German [Germany]
Frisian [Netherlands]
Afrikaans
Dutch [Netherlands]
Finnish [Finland]
Estonian [Estonia]
Turkish [Turkey]
Uzbek [Utzbekistan]
Hungarian [Hungary]
Basque [Spain]
Slovak [Slovakia]
Czech [Czech Rep.]
Bosnian [Bosnia]
Serbian [Serbia]
Croatian [Croatia]
Slovenian [Slovenia]
Polish [Poland]
Sorbian [Germany]
Lithuanian [Lithuania]
Latvian [Latvia]
Albanian [Albany]

CELTIC

GERMANIC

SLAVIC

BALTIC

ROMANCE

UGRO−FINNIC
ALTAIC

FIG. 1: Language Tree: This figure illustrates the
phylogenetic-like tree constructed on the basis of more than
50 different versions of the “The Universal Declaration of Hu-
man Rights”. The tree is obtained using the Fitch-Margoliash
method applied to a distance matrix whose elements are com-
puted in terms of the relative entropy between pairs of texts.
The tree features essentially all the main linguistic groups
of the Euro-Asiatic continent (Romance, Celtic, Germanic,
Ugro-Finnic, Slavic, Baltic, Altaic), as well as few isolated
languages as the Maltese, typically considered an Afro-Asiatic
language, and the Basque, classified as a non-Indo-European
language and whose origins and relationships with other lan-
guages are uncertain. Notice that the tree is unrooted, i.e.
it does not require any hypothesis about common ancestors
for the languages. What is important is the relative posi-
tions between pairs of languages. The branch lengths do not
correspond to the actual distances in the distance matrix.

fined procedures (performing for instance weighted aver-
ages over the first m ranked texts of a given text). There
are of course fluctuations in the success rate for each au-
thor and this has to be expected since the writing style is
something difficult to grasp and define; moreover it can
vary a lot in the production of a single author.

Classification of sequences: Suppose to have a col-
lection of texts, for instance a corpus containing several
versions of the same text in different languages, and sup-
pose to be interested in a classification of this corpus.

One has to face two kinds of problems: the availability
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of large collections of long texts in many different lan-
guages and, related to it, the need of a uniform coding for
the characters in different languages. In order to solve the
second problem we have used for all the texts the UNI-
CODE [19] standard coding. In order to have the largest
possible corpus of texts in different languages we have
used: “The Universal Declaration of Human Rights” [20]
which sets the Guinness World Record for Most Trans-
lated Document. Our method, mutuated by the phylo-
genetic analysis of biological sequences [21, 22, 23], con-
siders the construction of a distance matrix, i.e. a matrix
whose elements are the distances between pairs of texts.
We define the distance by:

SAB = (∆Ab −∆Bb)/∆Bb + (∆Ba −∆Aa)/∆Aa (2)

where A and B are indexes running on the corpus el-
ements and the normalization factors are chosen in or-
der to be independent of the coding of the original files.
Moreover, since the relative entropy is not a distance in
the mathematical sense, we make the matrix elements
satisfying the triangular inequality. It is important to
remark that a rigorous definition of distance between
two bodies of knowledge has been proposed by Li and
Vitányi [12]. Starting from the distance matrix one can
build a tree representation: phylogenetic trees [23], span-
ning trees etc. In our example we have used the Fitch-
Margoliash method [24] of the package PhylIP (Phy-
logeny Inference Package) [25] which basically constructs
a tree by minimizing the net disagreement between the
matrix pairwise distances and the distances measured on
the tree. Similar results have been obtained with the
Neighbor algorithm [25]. In Fig.1 we show the results for
over 50 languages widespread on the Euro-Asiatic con-
tinent. We can notice that essentially all the main lin-
guistic groups (Ethnologue source [26]) are recognized:
Romance, Celtic, Germanic, Ugro-Finnic, Slavic, Baltic,
Altaic. On the other hand one has isolated languages as
the Maltese which is typically considered an Afro-Asiatic
language and the Basque which is classified as a non-
Indo-European language and whose origins and relation-
ships with other languages are uncertain.

Needless to say how a careful investigation of specific
linguistics features is out of our purposes. In this frame-
work we are only interested to present the potentiality of
the method for several disciplines.

In conclusion we have presented here a general method
to recognize and classify automatically sequences of char-
acters. We have discussed in particular the application
to textual corpora in several languages. We have shown
how a suitable definition of remoteness between texts,
based on the concept of relative entropy, allows to ex-
tract from a text several important informations: the
language in which it is written, the subject treated as
well as its author; on the other hand the method al-
lows to classify sets of sequences (a corpus) on the basis

of the relative distances among the elements of the cor-
pus itself and organize them in a hierarchical structure
(graph, tree, etc.) The method is highly versatile and
general. It does apply to any kind of corpora of character
strings independently of the type of coding behind them:
time sequences, language, genetic sequences (DNA, pro-
teins etc). It does not require any a priori knowledge
of the corpus under investigation (alphabet, grammar,
syntax) nor about its statistics. These features are po-
tentially very important for fields where the human in-
tuition can fail: DNA and protein sequences, geological
time series, stock market data, medical monitoring, etc.
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