Statistische Methoden in der Computerlinguistik

1 Probability Theory

1.1 What is "Probability"?

1.1.1 Classical Definition

The probability $P(A)$ of an event A is defined as the ratio of the number $n(A)$ of occurrences of instances of that event to the number n of possible instances:

$$
P(A):=\frac{n(A)}{n}
$$

Problem(s):

- a posteriori: empirically motivated definition
- circular: simple events A must be equiprobable

1.1.2 Statistical Definition

Probability is defined in terms of relative frequency: the ratio $h(A)$ of the number of event instances to the total number of events in a concrete experiment:

$$
\begin{aligned}
h(A) & :=\frac{n(A)}{n} \\
P(A) & :=\lim _{n \rightarrow \infty} h(A)
\end{aligned}
$$

Problem(s):

- empirically motivated, yet not empircally groundable
- also works out to be circular

1.1.3 Axiomatic Definition (Kolmogoroff)

Basic Building Blocks:

- Ω : the sample space, a set of basic outcomes.
- $S \subseteq 2^{\Omega}$: the event space, a σ-field on Ω :
- non-empty: $S \neq \emptyset$
- closed under complement: $\forall x \in S: \bar{x} \in S$
- closed under union: $\forall x, y \in S: x \cup y \in S$

A probability distribution for an event space S is a (total) function: $P: S \rightarrow \mathbb{R}$ which fulfills Axioms (1) through (3):

1. For arbitrary events $A \in S: A \in S: P(A) \geq 0$
2. $P(\Omega)=1$
3. For arbitrary sequences of pairwise disjoint events $A_{1}, A_{2}, \ldots \in S$:

$$
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

Theorem 1 (Empty Event) $\quad P(\emptyset)=0$

Theorem 2 (Finite Sums) For arbitrary finite sequences of pairwise disjoint events $A_{1}, A_{2}, \ldots, A_{n}$:

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)
$$

Theorem 3 (Subtraction Rule) For arbitrary $A \in S$:

$$
P(\bar{A})=1-P(A)
$$

Theorem 4 (Probability Range) For arbitrary $A \in S$:

$$
0 \leq P(A) \leq 1
$$

Theorem 5 (Subevent Probability) For $A, B \in S$:

$$
A \subseteq B \Rightarrow P(A) \leq P(B)
$$

Theorem 6 (Addition Rule) For arbitrary $A, B \in S$:

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Law of Large Numbers: Given the axioms (and theorems) above, we can approach the statistical definition of probability (see Section 1.1.2 from the other side: since the relative frequency $\frac{n(A)}{n}$ can vary between experimental runs, we can speak of the probability that it lies in a given interval. If the actual probability of the event is $P(A)$, then we can say for an arbitrary $\varepsilon \in \mathbb{R}$ that:

$$
\lim _{n \rightarrow \infty} P\left(\left|\frac{n(A)}{n}-P(A)\right|<\varepsilon\right)=1
$$

This assertion is known as the Law of Large Numbers.

1.2 Stochastic (in)Dependence

Definition 1 (Stochastic Independence) Two events A and B are said to be independent iff:

$$
P(A \cap B)=P(A) \times P(B)
$$

Theorem 7 If two events A and B are independent, then A and \bar{B}, \bar{A} and B, as well as \bar{A} and \bar{B} are also independent.

1.2.1 Conditional Probability

Definition 2 Given $P(B)>0$, the conditional probability of A given $B P(A \mid B)$ is defined as:

$$
P(A \mid B):=\frac{P(A \cap B)}{P(B)}
$$

Theorem 8 Assuming $P(B)>0$, two events A and B are independent iff

$$
P(A \mid B)=P(A)
$$

Theorem 9 (Multiplication Rule) For all $A, B \in S$:

$$
P(B) P(A \mid B)=P(A \cap B)=P(A) P(B \mid A)
$$

Theorem 10 (Chain Rule) For $n \in \mathbb{N}, A_{1}, \ldots, A_{n} \in S$:
$P\left(A_{1} \cap \cdots \cap A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdots P\left(A_{n} \mid A_{1} \cap \cdots \cap A_{n-1}\right)$
... somewhat prettier:

$$
P\left(\bigcap_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} P\left(A_{i} \mid \bigcap_{j=1}^{i-1} A_{j}\right)
$$

Theorem 11 (Bayes' Theorem)

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

