Statistische Methoden in der Computerlinguistik

2 More Probability Theory

2.1 Random Variables

Idea:

- Axioms: Ω can be any (non-empty) set.
- It is often easier (sometimes even more natural) to restrict our observations to a set of numbers, such as \mathbb{R} .
- Random variables are used to map any sample space Ω (partially) to \mathbb{R} .

Definition 1 (Random Variable) Let S be an event space over a set Ω of basic outcomes, and let P be a probability distribution over S. A random variable (over Ω) is a function:

$$X:\Omega\to\mathbb{R}$$

such that for all $x \in \mathbb{R} : \{\omega \in \Omega \mid X(\omega) = x\} \in S$

Example 1 (Coin Toss: Random Variable) Let $\Omega = \{heads, tails\}$. Then, $X = \{(heads, 0), (tails, 1)\}$ is a random variable over Ω :

$$\begin{array}{rcl} X(heads) &=& 0\\ X(tails) &=& 1 \end{array}$$

Example 2 (Two Dice: Random Variable) For the throw of two dice, let $\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$. Then, $X = \bigcup_{i=1}^{6} \bigcup_{j=1}^{6} \{((i, j), i+j)\}$ is a random variable over Ω :

2.1.1 Discrete vs. Continuous Random Variables

A discrete random variable is one whose image under Ω is finite or countable. Continuous random variables are out there too, but they will not concern us in this course.

2.2 Probability Mass Functions

A probability mass function (sometimes simply called a probability function) is determined by a random variable X and a probability distribution P over $\Omega = dom(X)$.

Definition 2 (Probability Mass Function) Let X be a random variable over a set Ω of basic outcomes, and let P be a probability distribution over Ω . Then, the probability mass function (pmf) associated with X is given by:

$$p_X(x) = p(X = x) = P(\{\omega \in \Omega \mid X(\omega) = x\})$$

It can be shown that p_X is always a probability distribution over \mathbb{R} . Often, the subscript X is omitted from the probability mass function p_X when the random variable concerned is clear from the context.

Example 3 (Coin Toss: Probability Function) Assuming the coin is fair, $P(heads) = P(tails) = \frac{1}{2}$. Therefore, $p_X(0) = p_X(1) = 0.5$, and $\forall x \in \mathbb{R} - \{0,1\}: p_X(x) = 0$.

Example 4 (Two Dice: Probability Function) Probability mass is distributed according to the following table:

x	$X^{-1}(x)$	$p_X(x)$
2	$\{(1,1)\}$	1/36
3	$\{(1,2),(2,1)\}$	2/36
4	$\{(1,3),(2,2),(3,1)\}$	3/36
5	$\{(1,4),(2,3),(3,2),(4,1)\}$	4/36
6	$\{(1,5), (2,4), (3,3), (4,2), (5,1)\}$	5/36
7	$\{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$	6/36
8	$\{(2,6), (3,5), (4,4), (5,3), (6,2)\}$	5/36
9	$\{(3,6),(4,5),(5,4),(6,3)\}$	4/36
10	$\{(4,6), (5,5), (6,4)\}$	3/36
11	$\{(5,6),(6,5)\}$	2/36
12	$\{(6,6)\}$	1/36

2.3 Some Properties of Random Variables

2.3.1 Sample Space

Definition 3 (Sample Space of a Random Variable) The sample space of a random variable X is just the image of X under Ω , and is written Ω_X

$$\Omega_X := X(\Omega) = \bigcup_{\omega \in \Omega} \{X(\omega)\}$$

2.3.2 Expectation Value

Definition 4 (Expectation Value) The expectation value E(X) of a random variable X is simply the mean or average value of that variable, computed as a weighted sum of the variable's sample space:

$$E(X) = \sum_{x \in \Omega_X} x \cdot p_X(x)$$

One common convention uses the Greek letter μ to denote the expectation value of a random variable, when the particular variable is clear from the surrounding context: $\mu = E(X)$.

Example 5 (Coin Toss: Expectation Value)

$$E(X) = X(heads) \cdot p_X(X(heads)) + X(tails) \cdot p_X(X(tails))$$

= 0 \cdot 0.5 + 1 \cdot 0.5
= 0.5

Example 6 (Two Dice: Expectation Value)

$$E(X) = \frac{1}{36} \cdot 2 + \frac{2}{36} \cdot 3 + \frac{3}{36} \cdot 4 + \frac{4}{36} \cdot 5 + \frac{5}{36} \cdot 6 + \frac{6}{36} \cdot 7 + \frac{5}{36} \cdot 8 + \frac{4}{36} \cdot 9 + \frac{3}{36} \cdot 10 + \frac{2}{36} \cdot 11 + \frac{1}{36} \cdot 12 = 7$$

Every function $g : \mathbb{R} \to \mathbb{R}$ can be used to map a random variable X to a new random variable Y = g(X). The expectation value of such a functionally composed random variable is given by:

$$E(Y) = E(g(X)) = \sum_{x \in \Omega_X} g(x) \cdot p(x)$$

In particular, it is interesting (and useful) to note that ...

Theorem 1 (Expectation Value of Linear Functions) If $g : \mathbb{R} \to \mathbb{R}$ is a linear function – that is, if g(x) = ax + b for some constants $a, b \in \mathbb{R}$ and for all $x \in \mathbb{R}$, then E(g(X)) can be computed as a function of E(X):

$$E(q(X)) = E(aX + b) = aE(X) + b$$

Theorem 2 (Sum of Expectation Values) The sum of linear combinations of arbitrary random variables can be computed in terms of the expectation values of the variables themselves:

$$E(aX + bY) = aE(X) + bE(Y)$$

Theorem 3 (Product of Independent Expectation Values) If X and Y are independent random variables, then:

$$E(X \cdot Y) = E(X) \cdot E(Y)$$

2.3.3 Variance

Definition 5 (Variance) The variance of a random variable X is a measure of how widely that variable's values are distributed, computed as the average square difference between the variable's values its mean:

$$Var(X) := E((X - E(X))^2)$$

= $E(X^2) - E(X)^2$

It is common to write σ^2 to refer to the variance of a random variable, when the random variable in question is clear from the surrounding context: $\sigma^2 = Var(X)$. This is largely due to the fact that the standard deviation – commonly written σ – is defined as the square root of the variance: $\sigma = \sqrt{Var(X)}$.

Example 7 (Coin Toss: Variance)

$$Var(X) = E((X - 0.5)^2)$$

= $\sum_{x \in \Omega_X} p_X(x) \cdot (x - 0.5)^2$
= $0.5 \cdot (0 - 0.5)^2 + 0.5 \cdot (1 - 0.5)^2$
= $0.5 \cdot -0.5^2 + 0.5 \cdot .5^2$
= $0.5 \cdot 0.25 + 0.5 \cdot .25$
= $0.125 + 0.125$
= 0.25

Example 8 (Two Dice: Variance)

$$\begin{array}{lll} Var(X) &=& E(X^2) - E(X)^2 \\ &=& 2^2 \cdot \frac{1}{36} + 3^2 \cdot \frac{2}{36} + 4^2 \cdot \frac{3}{36} + 5^2 \cdot \frac{4}{36} + 6^2 \cdot \frac{5}{36} + 7^2 \cdot \frac{6}{36} + \\ & & 8^2 \cdot \frac{5}{36} + 9^2 \cdot \frac{4}{36} + 10^2 \cdot \frac{3}{36} + 11^2 \cdot \frac{2}{36} + 12^2 \cdot \frac{1}{36} \\ & & -7^2 \\ &=& 4 \cdot \frac{1}{36} + 9 \cdot \frac{2}{36} + 16 \cdot \frac{3}{36} + 25 \cdot \frac{4}{36} + 46 \cdot \frac{5}{36} + 49 \cdot \frac{6}{36} + \\ & & 64 \cdot \frac{5}{36} + 81 \cdot \frac{4}{36} + 100 \cdot \frac{3}{36} + 121 \cdot \frac{2}{36} + 144 \cdot \frac{1}{36} \\ & & -49 \\ &=& 35/6 \\ &\approx& 5.83 \end{array}$$