Statistische Methoden in der Computerlinguistik

2 More Probability Theory

2.1 Random Variables

Idea:

- Axioms: Ω can be any (non-empty) set.
- It is often easier (sometimes even more natural) to restrict our observations to a set of numbers, such as \mathbb{R}.
- Random variables are used to map any sample space Ω (partially) to \mathbb{R}.

Definition 1 (Random Variable) Let S be an event space over a set Ω of basic outcomes, and let P be a probability distribution over S. A random variable (over Ω) is a function:

$$
X: \Omega \rightarrow \mathbb{R}
$$

such that for all $x \in \mathbb{R}:\{\omega \in \Omega \mid X(\omega)=x\} \in S$

Example 1 (Coin Toss: Random Variable) Let $\Omega=\{$ heads, tails $\}$. Then, $X=\{($ heads, 0$),($ tails, 1$)\}$ is a random variable over Ω :

$$
\begin{aligned}
X(\text { heads }) & =0 \\
X(\text { tails }) & =1
\end{aligned}
$$

Example 2 (Two Dice: Random Variable) For the throw of two dice, let $\Omega=\{1,2,3,4,5,6\} \times\{1,2,3,4,5,6\}$. Then, $X=\bigcup_{i=1}^{6} \bigcup_{j=1}^{6}\{((i, j), i+j)\}$ is a random variable over Ω :

$$
\begin{aligned}
X(1,1) & =1+1=2 \\
X(1,2) & =1+2=3 \\
& \vdots \\
X(6,6) & =6+6=12
\end{aligned}
$$

2.1.1 Discrete vs. Continuous Random Variables

A discrete random variable is one whose image under Ω is finite or countable. Continuous random variables are out there too, but they will not concern us in this course.

2.2 Probability Mass Functions

A probability mass function (sometimes simply called a probability function) is determined by a random variable X and a probability distribution P over $\Omega=\operatorname{dom}(X)$.

Definition 2 (Probability Mass Function) Let X be a random variable over a set Ω of basic outcomes, and let P be a probability distribution over Ω. Then, the probability mass function (pmf) associated with X is given by:

$$
p_{X}(x)=p(X=x)=P(\{\omega \in \Omega \mid X(\omega)=x\})
$$

It can be shown that p_{X} is always a probability distribution over \mathbb{R}. Often, the subscript X is omitted from the probability mass function p_{X} when the random variable concerned is clear from the context.

Example 3 (Coin Toss: Probability Function) Assuming the coin is fair, $P($ heads $)=P($ tails $)=\frac{1}{2}$. Therefore, $p_{X}(0)=p_{X}(1)=0.5$, and $\forall x \in \mathbb{R}-$ $\{0,1\}: p_{X}(x)=0$.

Example 4 (Two Dice: Probability Function) Probability mass is distributed according to the following table:

x	$X^{-1}(x)$	$p_{X}(x)$
2	$\{(1,1)\}$	$1 / 36$
3	$\{(1,2),(2,1)\}$	$2 / 36$
4	$\{(1,3),(2,2),(3,1)\}$	$3 / 36$
5	$\{(1,4),(2,3),(3,2),(4,1)\}$	$4 / 36$
6	$\{(1,5),(2,4),(3,3),(4,2),(5,1)\}$	$5 / 36$
7	$\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$	$6 / 36$
8	$\{(2,6),(3,5),(4,4),(5,3),(6,2)\}$	$5 / 36$
9	$\{(3,6),(4,5),(5,4),(6,3)\}$	$4 / 36$
10	$\{(4,6),(5,5),(6,4)\}$	$3 / 36$
11	$\{(5,6),(6,5)\}$	$2 / 36$
12	$\{(6,6)\}$	$1 / 36$

2.3 Some Properties of Random Variables

2.3.1 Sample Space

Definition 3 (Sample Space of a Random Variable) The sample space of a random variable X is just the image of X under Ω, and is written Ω_{X}

$$
\Omega_{X}:=X(\Omega)=\bigcup_{\omega \in \Omega}\{X(\omega)\}
$$

2.3.2 Expectation Value

Definition 4 (Expectation Value) The expectation value $E(X)$ of a random variable X is simply the mean or average value of that variable, computed as a weighted sum of the variable's sample space:

$$
E(X)=\sum_{x \in \Omega_{X}} x \cdot p_{X}(x)
$$

One common convention uses the Greek letter μ to denote the expectation value of a random variable, when the particular variable is clear from the surrounding context: $\mu=E(X)$.

Example 5 (Coin Toss: Expectation Value)

$$
\begin{array}{rlcccccc}
E(X) & = & X(\text { heads }) & \cdot & p_{X}(X(\text { heads })) & + & X(\text { tails }) & \cdot \\
& = & 0 & \cdot & 0.5 & + & 1 & p_{X}(X(\text { tails })) \\
& = & 0.5 & & & & & \\
0.5
\end{array}
$$

Example 6 (Two Dice: Expectation Value)

$$
\begin{aligned}
E(X)= & \frac{1}{36} \cdot 2+\frac{2}{36} \cdot 3+\frac{3}{36} \cdot 4+\frac{4}{36} \cdot 5+\frac{5}{36} \cdot 6+\frac{6}{36} \cdot 7+ \\
& \frac{5}{36} \cdot 8+\frac{4}{36} \cdot 9+\frac{3}{36} \cdot 10+\frac{2}{36} \cdot 11+\frac{1}{36} \cdot 12 \\
= & 7
\end{aligned}
$$

Every function $g: \mathbb{R} \rightarrow \mathbb{R}$ can be used to map a random variable X to a new random variable $Y=g(X)$. The expectation value of such a functionally composed random variable is given by:

$$
E(Y)=E(g(X))=\sum_{x \in \Omega_{X}} g(x) \cdot p(x)
$$

In particular, it is interesting (and useful) to note that ...
Theorem 1 (Expectation Value of Linear Functions) If $g: \mathbb{R} \rightarrow \mathbb{R}$ is a linear function - that is, if $g(x)=a x+b$ for some constants $a, b \in \mathbb{R}$ and for all $x \in \mathbb{R}$, then $E(g(X))$ can be computed as a function of $E(X)$:

$$
E(g(X))=E(a X+b)=a E(X)+b
$$

Theorem 2 (Sum of Expectation Values) The sum of linear combinations of arbitrary random variables can be computed in terms of the expectation values of the variables themselves:

$$
E(a X+b Y)=a E(X)+b E(Y)
$$

Theorem 3 (Product of Independent Expectation Values) If X and Y are independent random variables, then:

$$
E(X \cdot Y)=E(X) \cdot E(Y)
$$

2.3.3 Variance

Definition 5 (Variance) The variance of a random variable X is a measure of how widely that variable's values are distributed, computed as the average square difference between the variable's values its mean:

$$
\begin{aligned}
\operatorname{Var}(X) & :=E\left((X-E(X))^{2}\right) \\
& =E\left(X^{2}\right)-E(X)^{2}
\end{aligned}
$$

It is common to write σ^{2} to refer to the variance of a random variable, when the random variable in question is clear from the surrounding context: $\sigma^{2}=$ $\operatorname{Var}(X)$. This is largely due to the fact that the standard deviation - commonly written σ - is defined as the square root of the variance: $\sigma=\sqrt{\operatorname{Var}(X)}$.

Example 7 (Coin Toss: Variance)

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left((X-0.5)^{2}\right) \\
& =\sum_{x \in \Omega_{X}} p_{X}(x) \cdot(x-0.5)^{2} \\
& =0.5 \cdot(0-0.5)^{2}+0.5 \cdot(1-0.5)^{2} \\
& =0.5 \cdot-0.5^{2}+0.5 \cdot .5^{2} \\
& =0.5 \cdot 0.25+0.5 \cdot .25 \\
& =0.125+0.125 \\
& =0.25
\end{aligned}
$$

Example 8 (Two Dice: Variance)

$$
\begin{aligned}
\operatorname{Var}(X)= & E\left(X^{2}\right)-E(X)^{2} \\
= & 2^{2} \cdot \frac{1}{36}+3^{2} \cdot \frac{2}{36}+4^{2} \cdot \frac{3}{36}+5^{2} \cdot \frac{4}{36}+6^{2} \cdot \frac{5}{36}+7^{2} \cdot \frac{6}{36}+ \\
& 8^{2} \cdot \frac{5}{36}+9^{2} \cdot \frac{4}{36}+10^{2} \cdot \frac{3}{36}+11^{2} \cdot \frac{2}{36}+12^{2} \cdot \frac{1}{36} \\
& -7^{2} \\
= & 4 \cdot \frac{1}{36}+9 \cdot \frac{2}{36}+16 \cdot \frac{3}{36}+25 \cdot \frac{4}{36}+46 \cdot \frac{5}{36}+49 \cdot \frac{6}{36}+ \\
& 64 \cdot \frac{5}{36}+81 \cdot \frac{4}{36}+100 \cdot \frac{3}{36}+121 \cdot \frac{2}{36}+144 \cdot \frac{1}{36} \\
= & -49 \\
= & 35 / 6 \\
\approx & 5.83
\end{aligned}
$$

