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2 More Probability Theory

2.1 Random Variables

Idea:

• Axioms: Ω can be any (non-empty) set.

• It is often easier (sometimes even more natural) to restrict our observations
to a set of numbers, such as R.

• Random variables are used to map any sample space Ω (partially) to R.

Definition 1 (Random Variable) Let S be an event space over a set Ω of
basic outcomes, and let P be a probability distribution over S. A random variable
(over Ω) is a function:

X : Ω → R

such that for all x ∈ R : {ω ∈ Ω | X(ω) = x} ∈ S

Example 1 (Coin Toss: Random Variable) Let Ω = {heads, tails}. Then,
X = {(heads, 0), (tails, 1)} is a random variable over Ω:

X(heads) = 0
X(tails) = 1

Example 2 (Two Dice: Random Variable) For the throw of two dice, let
Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}. Then, X =

⋃6
i=1

⋃6
j=1{((i, j), i + j)} is a

random variable over Ω:

X(1, 1) = 1 + 1 = 2
X(1, 2) = 1 + 2 = 3

...
X(6, 6) = 6 + 6 = 12

2.1.1 Discrete vs. Continuous Random Variables

A discrete random variable is one whose image under Ω is finite or countable.
Continuous random variables are out there too, but they will not concern us in
this course.
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2.2 Probability Mass Functions

A probability mass function (sometimes simply called a probability function)
is determined by a random variable X and a probability distribution P over
Ω = dom(X).

Definition 2 (Probability Mass Function) Let X be a random variable over
a set Ω of basic outcomes, and let P be a probability distribution over Ω. Then,
the probability mass function (pmf) associated with X is given by:

pX(x) = p(X = x) = P ({ω ∈ Ω | X(ω) = x})

It can be shown that pX is always a probability distribution over R. Often, the
subscript X is omitted from the probability mass function pX when the random
variable concerned is clear from the context.

Example 3 (Coin Toss: Probability Function) Assuming the coin is fair,
P (heads) = P (tails) = 1

2 . Therefore, pX(0) = pX(1) = 0.5, and ∀x ∈ R −
{0, 1} : pX(x) = 0.

Example 4 (Two Dice: Probability Function) Probability mass is distributed
according to the following table:

x X−1(x) pX(x)
2 {(1, 1)} 1/36
3 {(1, 2), (2, 1)} 2/36
4 {(1, 3), (2, 2), (3, 1)} 3/36
5 {(1, 4), (2, 3), (3, 2), (4, 1)} 4/36
6 {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} 5/36
7 {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} 6/36
8 {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} 5/36
9 {(3, 6), (4, 5), (5, 4), (6, 3)} 4/36
10 {(4, 6), (5, 5), (6, 4)} 3/36
11 {(5, 6), (6, 5)} 2/36
12 {(6, 6)} 1/36

2.3 Some Properties of Random Variables

2.3.1 Sample Space

Definition 3 (Sample Space of a Random Variable) The sample space of
a random variable X is just the image of X under Ω, and is written ΩX

ΩX := X(Ω) =
⋃

ω∈Ω

{X(ω)}
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2.3.2 Expectation Value

Definition 4 (Expectation Value) The expectation value E(X) of a ran-
dom variable X is simply the mean or average value of that variable, computed
as a weighted sum of the variable’s sample space:

E(X) =
∑

x∈ΩX

x · pX(x)

One common convention uses the Greek letter µ to denote the expectation value
of a random variable, when the particular variable is clear from the surrounding
context: µ = E(X).

Example 5 (Coin Toss: Expectation Value)

E(X) = X(heads) · pX(X(heads)) + X(tails) · pX(X(tails))
= 0 · 0.5 + 1 · 0.5
= 0.5

Example 6 (Two Dice: Expectation Value)

E(X) =
1
36

· 2 +
2
36

· 3 +
3
36

· 4 +
4
36

· 5 +
5
36

· 6 +
6
36

· 7 +

5
36

· 8 +
4
36

· 9 +
3
36

· 10 +
2
36

· 11 +
1
36

· 12

= 7

Every function g : R → R can be used to map a random variable X to a
new random variable Y = g(X). The expectation value of such a functionally
composed random variable is given by:

E(Y ) = E(g(X)) =
∑

x∈ΩX

g(x) · p(x)

In particular, it is interesting (and useful) to note that . . .

Theorem 1 (Expectation Value of Linear Functions) If g : R → R is a
linear function – that is, if g(x) = ax + b for some constants a, b ∈ R and for
all x ∈ R, then E(g(X)) can be computed as a function of E(X):

E(g(X)) = E(aX + b) = aE(X) + b

Theorem 2 (Sum of Expectation Values) The sum of linear combinations
of arbitrary random variables can be computed in terms of the expectation values
of the variables themselves:

E(aX + bY ) = aE(X) + bE(Y )
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Theorem 3 (Product of Independent Expectation Values) If X and Y
are independent random variables, then:

E(X · Y ) = E(X) · E(Y )

2.3.3 Variance

Definition 5 (Variance) The variance of a random variable X is a measure
of how widely that variable’s values are distributed, computed as the average
square difference between the variable’s values its mean:

V ar(X) := E((X − E(X))2)
= E(X2)− E(X)2

It is common to write σ2 to refer to the variance of a random variable, when
the random variable in question is clear from the surrounding context: σ2 =
V ar(X). This is largely due to the fact that the standard deviation – commonly
written σ – is defined as the square root of the variance: σ =

√
V ar(X).

Example 7 (Coin Toss: Variance)

V ar(X) = E((X − 0.5)2)
=

∑
x∈ΩX

pX(x) · (x− 0.5)2

= 0.5 · (0− 0.5)2 + 0.5 · (1− 0.5)2

= 0.5 · −0.52 + 0.5 · .52

= 0.5 · 0.25 + 0.5 · .25
= 0.125 + 0.125
= 0.25

Example 8 (Two Dice: Variance)

V ar(X) = E(X2)− E(X)2

= 22 · 1
36 + 32 · 2

36 + 42 · 3
36 + 52 · 4

36 + 62 · 5
36 + 72 · 6

36+
82 · 5

36 + 92 · 4
36 + 102 · 3

36 + 112 · 2
36 + 122 · 1

36
−72

= 4 · 1
36 + 9 · 2

36 + 16 · 3
36 + 25 · 4

36 + 46 · 5
36 + 49 · 6

36+
64 · 5

36 + 81 · 4
36 + 100 · 3

36 + 121 · 2
36 + 144 · 1

36
−49

= 35/6
≈ 5.83
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