

Some Remarks on Text Data Visualization and Codec Transparency

Bryan Jurish jurish@bbaw.de

VisiHu 2017: Visualisierungsprozesse in den Humanities Universität Zürich 17th July, 2017

berlin-brandenburgische

AKADEMIE DER WISSENSCHAFTEN

Preliminaries

- Full Disclosure
- Terminology: Data, Text, & Visualization

Remarks

- Pipelines, Parameters, & (visualization) Procedures
- Visualizations as Filters
- Lossiness, Compression, & 'Universal' Filters
- 'Intuitivity', Exploitation, & Coherence
- Co-operation & Codec Transparency

Summary

Full Disclosure

- I am a computational linguist
 - tinker of algorithms
 - tweaker of data structures
 - not a philosopher

(... but I played one as an undergraduate)

Full Disclosure

CLARIN-D

- I am a computational linguist
 - tinker of algorithms
 - tweaker of data structures
 - not a philosopher
 - (... but I played one as an undergraduate)
- I am also an incorrigible Platonist
 - $\blacktriangleright \quad \Box \exists x.x = \emptyset$
 - formal (mathematical) objects really exist!
 - good company:

Full Disclosure

CLARIN-D

- I am a computational linguist
 - tinker of algorithms
 - tweaker of data structures
 - not a philosopher
 - (... but I played one as an undergraduate)
- I am also an incorrigible Platonist
 - $\blacktriangleright \quad \Box \exists x.x = \emptyset$
 - formal (mathematical) objects really exist!
 - good company:

- Please adjust your interpretative apparatus if and where required
 - to accommodate my bottomless naïveté, and/or
 - according to your own epistemological commitments (or lack thereof)

Terminology

Visualization

- an algorithmic procedure by which an underlying *data source* is transformed to *graphical form* for direct human consumption
- e.g. as a network graph, tag cloud, motion chart, etc.

Text Data

 a (digital) text corpus, possibly including extralinguistic information such as bibliographic meta-data, document structure, etc.

Text Data Visualization

 a visualization procedure using a (digital) text corpus as its underlying data source (usually indirectly)

Visualization Pipeline

a cascade of algorithmic procedures by which (raw) text data is prepared for and formatted by a particular visualization procedure, including any preprocessing and application-specific modeling

Facts

- raw text data itself does not directly support most visualization procedures
- each visualization procedure imposes *formal constraints* on its parameters

Claim

- (preprocessing) pipelines $\not\perp$ (visualization) procedures
- "generic" visualization procedures cannot be clearly distinguished from the preprocessing machinery ("*pipeline*") which supplies their input

Rhetoric

- Q: how does one visualize a flat list of unweighted terms as a network graph?
 A: one doesn't! (at least not in any meaningful way)
- Q: why is Mike Bostock's D3.js API so mind-bogglingly complex?
 A: because it needs to be! ("generic" visualization procedures are fictional)

noisy channel model of communication

(Shannon 1948)

- noisy channel model
 - "*codec*" = encoder \oplus decoder

(Shannon 1948)

- noisy channel model
 - "codec" = encoder \oplus decoder
- text data visualization codec (naïve tinker's version)

(Shannon 1948)

noisy channel model

(Shannon 1948)

- "codec" = encoder \oplus decoder
- text data visualization codec (naïve tinker's version) ~> not the whole story!

Noise Source (Lossy Compression)

- noisy channel model
 - "codec" = encoder \oplus decoder
- natural language is a *lossy codec*

(Shannon 1948)

(Reddy 1979)

Noise Source (Lossy Compression)

- noisy channel model
 - "codec" = encoder \oplus decoder
- natural language is a lossy codec
- text data visualization is a (lossy) *filter*

(Shannon 1948)

(Reddy 1979)

- natural language is a lossy codec
- text data visualization is a (lossy) filter
- reception (interpretation) is filtered too!

(Reddy 1979) (transmission side)

(vet)

Visualization Pipelines ~> Lossy Compression

- information is *lost* when messages are passed through the codec
 - usually by design (we already have the text-encoding)
 - no lossless formal model of natural language available

'Universal' Filters

- as humans, we're *already equipped with* a whole bevy of (lossy) filters:
 - linguistic (minimal attachment, semantic priming)
 - perceptual (motion detection, color sensitivity)
 - cognitive (object independence, causal relations)
 - (common knowledge, conventional signs)

Lossiness \sim 'Distance'

cultural

- Iossy filters increase "reading distance"
- the communication channel was already fallible

CLARIN-I

'Intuitivity'

- 'intuitive' visualizations *exploit* users' pre-existing ('universal') filters
 - ▶ perceptual ~→ size, motion, color
 - cognitive ~> physical simulations, display "objects"
 - cultural ~> shared conventional signs
- reduced recipient processing load
 - "progressive disclosure" ~> conscious focus

Exploitation & Coherence

- successful exploitation ⇔ *coherence* of pipeline- & user-filters
 - all and only *relevant* information passes unchanged through both codecs
 - relevance depends on user's individual research question

Co-operation

"Make your contribution such as it is required, at the stage at which it occurs, by the accepted purpose or direction of the talk exchange in which you are engaged." — Grice (1975)

Codec Transparency

no perceptible data loss

(e.g. mp3, ogg audio codecs)

visualization ~> no apprehensible (relevant) data loss

Visualization as (co-operative) Communication

- **Task**: maximize transparency \rightsquigarrow optimize for users' common research goals
- Challenges:
 - research goals vary widely between users, projects
 - commonalities can be hard to identify and formally model

Summary

Visualization Procedures

non-modular, interface constraints

Visualization Pipelines

noisy-channel filters

'Universal' Filters

recipient-internal

'Intuitivity'

exploitation of recipient filters

Co-operative Communication

maximize codec transparency

(preprocessing pipelines)

(lossy, usually by design)

(perceptual, cognitive, cultural)

(relevance, coherence)

(minimize apprehensible loss)

— The End —

Thank you for listening!

http://kaskade.dwds.de/~jurish/visihu2017/danke

- P. Grice. Logic and conversation. In P. Cole and J. Morgan, editors, *Syntax and Semantics*, volume 3: Speech Acts, pages 41–58. Academic Press, 1975.
- F. Moretti. Distant reading. Verso Books, 2013.
- M. J. Reddy. The conduit metaphor: A case of frame conflict in our language about language.
 In A. Ortony, editor, *Metaphor and Thought*, pages 284–310. Cambridge University Press, 1979.
- C. E. Shannon. A mathematical theory of communication. *Bell System Technical Journal*, 27 (3):379–423, 1948.