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Abstract

Much research has been devoted to the task of learning lexical classes from unan-
notated input text. Among the chief difficulties facing any approach to the unsu-
pervised induction of lexical classes are that of token-level ambiguity and the clas-
sification of rare and unknown words. Following the work of previous authors, the
initial stage of syntactic category induction is treated in the current approach as a
clustering problem over a small number of highly frequent word types. An iterative
procedure making use of Zipf’s law to generate the clustering schedule classifies less
frequent words based on the monotonic Bernoulli entropy of expected co-occurrence
probability with respect to the clusters output by the previous stage, employing a
fuzzy cluster membership heuristic to approximate type-level ambiguity and reduce
error propagation in a simulated melting procedure. In a second processing phase,
cluster membership probabilities output by the final clustering stage are used in a
procedure for the recovery of context-dependent token-level ambiguity resolution.
The induced classifications are evaluated with a meta-modelling strategy intended to
capture their expected linguistic utility.
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1 Introduction

Much research in computational language learning has been devoted to the task of learning
lexical classes from unannotated input text. In particular, the unsupervised induction of
syntactic categories by reference to the distributional similarity among their realizations
(words) has been of great interest both for language modelling and for linguistically mo-
tivated approaches. Among the chief difficulties facing these and any other approach to
unsupervised syntactic classification are that of token-level ambiguity – a given word type
may properly belong to multiple syntactic categories, although each individual token real-
izes only one category – and that of rare and unknown words, the available data for which
do not sufficiently motivate any classification at all. This paper presents a hybrid method
for the induction of a syntactic classifier which respects the token/type distinction and
which is further capable of classifying unknown text. The desired system output can be
formally described as a function1 τ : A∗ → C∗ which assigns to every element of an input
sequence exactly one category.

Following the work of previous authors, the first phase of syntactic category induction is
treated in the current approach as a clustering problem over word types, considering only a
small number of highly frequent word types in the initial bootstrapping stage. An iterative
procedure making use of Zipf’s law to generate the clustering schedule classifies less frequent
words based on the monotonic Bernoulli entropy of expected co-occurrence probability with
respect to the clusters output by the previous stage, employing a fuzzy cluster membership
heuristic to approximate type-level ambiguity and reduce error propagation.

The remainder of this paper is organized as follows: Section 2 describes selected previous

1Here and henceforth, A denotes a finite word alphabet, C denotes a finite set of target categories, and
S∗ denotes the Kleene closure of the set S. Variables w and c range over words and categories, respectively,
and may be subscripted where necessary.
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work on lexical category induction, Section 3 describes the method employed by the current
approach in more detail, Section 4 presents a discussion of results for German and English,
and Section 5 contains a brief summary and perspectives on some remaining questions.

2 Related Work

A detailed review of previous work on clustering techniques is beyond the scope of this
document. The interested reader is referred to Jain et al. (1999) for a good survey of the
clustering literature. Below, some of the most central characteristics of general clustering
approaches are outlined, and some previous approaches to syntactic category induction are
briefly summarized.

In general, the task of word-type clustering can be described intuitively as the automated
discovery for each word type of its syntactic category on the basis of raw text input alone.
To this end, word types must first be identified with some salient subset of their distribu-

tional features, and a distance measure over these features must be selected.

Output of a clustering procedure can be characterized as either hard or soft with respect
to cluster membership criteria: hard clustering methods return a partitioning Π : A → C

of word-types into clusters, while soft methods return a cluster-membership probability
distribution p(c|w) : A× C → [0, 1] conditioned on word types.

The degree to which output clusters themselves exhibit internal structure is often captured
in terms of a distinction between hierarchical and flat clustering techniques. Hierarchical
clustering algorithms return subsumption trees, the leaves of which represent the data
to be clustered, while iterative algorithms usually return a set of opaque clusters often
characterized in terms of a prototypical (pseudo-) element. Iterative clustering procedures
are those which successively add new data elements to be clustered (usually one element
per iteration), until all data have been assigned to some cluster.

Previous approaches to word-type clustering may be coarsely divided into language mod-

elling and linguistically motivated approaches. Sections 2.1 and 2.2 are devoted to the
respective approaches.

2.1 Language Modelling Approaches

Language modelling approaches to word-type clustering are those which can be reduced to
a formal description of the task to be accomplished as one of information maximization,
or equivalently of code optimization: the top-level goal of word-type clustering here is
usually the construction of a maximally predictive language model with a minimal number
of parameters.

Such approaches are characterized by (formal) notions of minimum code length, informa-

tion loss, entropy, and perplexity. Typical distance functions include mutual information
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(MI) and Kullback-Leibler divergence (KLD). Commonly used evaluation methods include
test set probability, test-set entropy or perplexity, and KL-divergence with respect to a
baseline model over a test set.

Brown et al. (1992) presents a language-modelling approach using a greedy bottom-up
hierarchical clustering algorithm designed to maximize the average mutual information
between adjacent clusters given empirical word-type bigram distributions. No provision is
made for the word-type ambiguity. The algorithm is quite complex (on the order of O(A3)
even after severe optimization), leading the authors to consider an alternative iterative
approach in which the selection of new clustering targets is guided by absolute word-type
frequency, which is less complex than the hierarchical approach but not as successful at
reducing perplexity.

An intriguing approach presented by Pereira et al. (1993) makes use of an analogy to the
free energy function of statistical mechanics to cluster joint noun-verb distributions rep-
resentative of verb subcategorization frames. The authors use the KL-divergence between
distributions for cluster centroids and individual words as a similarity measure, together
with a maximum entropy technique to update cluster membership probabilities in a flat
centroid-based clustering procedure which is extended to produce hierarchical clusters in
Lee (1997). Maximal ambiguity – every word belonging to every cluster with nonzero
probability – is required in order to avoid singularities in the KL-divergence. No direct
provision for context-dependent ambiguity of clusters is made, but since a joint distribution
over word-type pairs mediated by clusters is learned, this is perhaps not a fatal flaw.

Clark (2000, 2001) describes an iterative agglomerative clustering procedure guided by
word-type unigram frequency which uses the KL-divergence between smoothed empirical
joint cluster-bigram distributions as a similarity measure. Hard clusters are produced by
an initial clustering phase for the bulk of the vocabulary, while cluster membership proba-
bilities for ambiguous words are estimated by expectation maximization (Dempster et al.,
1977) for mixture models using KL-divergence between smoothed empirical context distri-
butions – distributions over 〈left-neighbor, right-neighbor〉 pairs conditioned on word-types
– and cluster centroids. Rare words are handled by an additional smoothing mechanism.
The resulting classification has particular difficulties with ambiguous words, possibly re-
sulting from their late incorporation into the learning procedure, and conceivably related
to the fact that context is a poorer predictor of syntactic categories than word-type alone.

2.2 Linguistically Motivated Approaches

Linguistically motivated approaches to word-type clustering explicitly seek to induce clas-
sifications corresponding to conventional linguistic categories such as nouns, verbs, etc.

The primary goal is formulated as a cognitive modelling problem, namely, the induction
of linguistically salient categories.

Such approaches are characterized by notions such as part-of-speech or syntactic category,
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semantic class, and in particular of type-level ambiguity. Common evaluation methods
include manual inspection by an expert (i.e. by a linguist), Hughes’ (1994) benchmark
with respect to a gold-standard corpus annotated by hand with a linguistically motivated
tagset, and Schütze’s (1995) method for estimating precision and recall with respect to
a gold-standard. The latter two methods have been subject to some criticism in the
literature, mostly motivated by language modelling concerns. These issues are addressed
in more detail in Section 4.

Finch and Chater (1993) use Spearman’s rank correlation coefficient as a similarity mea-
sure over empirical distributions of first- and second-order neighbors given target words
to cluster the most frequent 1,000 word types in a 40 million word corpus by hierarchical
agglomerative clustering. The authors report a success rate (compliance of learned clus-
ters with a small number of traditional syntactic categories) near 95% as determined by
manual inspection. Since the system produces hard clusters, several clusters are formed
which correspond to ambiguous word types, which the authors count as successes. A more
systematic investigation of standard agglomerative hierarchical clustering methods and
distance measures is presented by Roberts (2002), who clusters the most frequent content
words based on a fixed-width window of relative co-occurrence frequencies with respect to
a small number of hand-selected function words.

Schütze (1993, 1995) uses a singular value decomposition on left- and right-context vectors
of co-occurrence frequencies to select salient distributional features of the input language
for the most frequent word types, and classifies the reduced vectors with the Buckshot clus-
tering algorithm (Cutting et al., 1992b), an efficient clustering algorithm which combines
hierarchical and iterative clustering techniques to produce semistructured hard clusters.
The vector cosine is used as a similarity measure. Less frequent words are attached di-
rectly to the nearest cluster centroid output by the initial classification, by comparison of
second-order context vectors based on co-occurrences with the word classes learned in the
initial clustering stage. In Schütze (1995), trigram types are clustered by reference to the
context vectors their component words.

Korkmaz and Üçoluk (1997) describe an approach making use of the Minkowski L1 norm
as a distance metric over empirical joint bigram distributions, together with the soft clus-
ter membership heuristic described by Gath and Geva (1989) to approximate type-level
ambiguity in a postprocessing phase. A specialized distance metric for the procedure
is proposed in Korkmaz and Üçoluk (1998). Another linguistically motivated approach
is that described by Elghamry (2004), who uses relative mutual information between a
target word and its immediate left- and right-neighbors to produce a coarse-grained unam-
biguous classification of word types which are then used in a procedure for bootstrapping
subcategorization frames.

Of the previous approaches to syntactic word-type clustering described above, only those
presented by Schütze (1993, 1995) make any provision for context-dependent token-level
resolution of type-level syntactic ambiguity. Hidden Markov Model (HMM) taggers (Church,
1988; DeRose, 1988; Cutting et al., 1992a) also provide a mechanism by means of which
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word types may be represented as ambiguous, but in which a token is always assigned an
unambiguous category, although the usual unsupervised learning method for HMMs – the
Baum-Welch algorithm (Baum et al., 1970) – is known to perform poorly unless initialized
with good estimates of the model’s parameters (Elworthy, 1994).

3 Method

The method for syntactic word category induction described here proceeds in two main
phases: first, target word-types are clustered in a multi-stage procedure, whose output is
a category membership probability distribution p̂(C|W ) conditioned on word types. In
the second phase, membership probabilities are used to induce a mechanism for context-
dependent token-level ambiguity resolution. Each phase of the procedure is described in
more detail below.

3.1 Clustering Phase

The clustering procedure used here can be considered an extension of the efficient Buck-
shot clustering algorithm described by Cutting et al. (1992b) as employed for word-type
clustering by Schütze (1993, 1995). An initial prototyping phase applies a traditional
agglomerative hierarchical clustering algorithm to a small initial set of target words rep-
resented by context vectors. In subsequent stages, new target words are attached to an
existing cluster. A fuzzy membership heuristic is used to incorporate the output of previ-
ous clustering solutions, and to mitigate the effects of the sparse data spaces common in
natural language.

3.1.1 Iterative Target Selection

Clustering proceeds in K stages, where K is some fixed natural number,2 At each stage
of the procedure, a set Tk ⊂ A of targets are selected for clustering, as well as a finite set
Bk of boundaries (also referred to here as “bounds”). In the experiments described below,
initial targets and bounds were selected on the basis of their global frequency ranks, and
subsequent targets were selected on the basis of their co-occurrence frequency ranks with
respect to previous targets. The initial target and boundary sets were identical, T1 = B1.

3

Zipf’s law (Zipf, 1949), which states that there is an inverse relation between a word’s
frequency and its rank in a list of words sorted in ascending order by frequency, was used
to generate a clustering schedule. As mentioned above, targets are selected by virtue of
frequency rank, and the maximum ranks of words chosen as targets for successive clustering

2In the experiments described here, the maximum number of iterations K was fixed at 10.
3One additional boundary element was used at each stage to mark beginning- and end-of-sentence for

left- and right-bigrams, respectively.
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stages constitute a power series, which by Zipf’s law approximates a linear decline in
expected log target frequency.4 The formula used to recursively compute the maximum
target rank rk+1 for stage k + 1 was:5

log rk+1 = log rk +

(

log(|A|) − log(|r1|)
K − 1

)

(1)

In the interest of reducing computational complexity, each target word is subject to direct
inspection in only one clustering stage: j 6= k implies Tj∩Tk = ∅ for 1 ≤ j, k ≤ K. Further,
after the initial stage, the boundary set was identified with the set of clusters discovered
by the previous iteration: Bk+1 = Ck for 1 ≤ k < K, where Ck is the set of clusters output
by the clustering stage k, Ck ∩ A = ∅.

3.1.2 Prototyping Stage, k = 1

Left- and right-bigram frequencies f`,k, fr,k : Tk × Bk → �
from an untagged input corpus

were collected for the target and bound sets. Let f0 : A2 → � be the raw corpus frequency
function, and define:

f`,1(w, b) = f0(b, w) (2)

fr,1(w, b) = f0(w, b) (3)

Here and henceforth, let z ∈ {`, r} range over directions, and define:

fz,k(w) =
∑

b∈Bk

fz,k(w, b) (4)

fz,k(b) =
∑

w∈Tk

fz,k(w, b) (5)

Nz,k =
∑

w∈Tk

fz,k(w) (6)

Bigram frequencies are used to compute the empirical (maximum likelihood) probability
distributions P`,k and Pr,k in the usual manner:6

Pz,k(w, b) =
fz,k(w, b)

Nz,k

(7)

Pz,k(w) =
fz,k(w)

Nz,k

(8)

4Hardware limitations led to the implementation of an additional parameter which places a strict upper
bound on the number of new targets incorporated at any given stage. In the experiments described here,
the growth bound was arbitrarily fixed to 32768, which corresponds to a memory footprint of 25 Mb for
the stage data matrix.

5The maximum rank of the initial target and boundary sets r1 was given as an additional parameter.
In the experiments described below, r1 was fixed at 200.

6Here and elsewhere, it is assumed that 0

0
= 0.
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The collected frequency data is used to populate a real-valued feature vector ~wk ∈ � 2|Bk|

for each target word w ∈ Tk. Target vectors were constructed by concatenating left- and
right- subvectors ~w`,k, ~wr,k ∈ � |Bk|

~wz,k = [~wz,k(1), . . . , ~wz,k(|Bk|)] (9)

~wk = ~w`,k ◦ ~wr,k = [~w`,k(1), . . . , ~w`,k(|Bk|), ~wr,k(1), . . . , ~wr,k(|Bk|)] (10)

where ~x(i) denotes the ith component of the vector ~x, and the subvectors ~w`,k and ~wr,k are
defined with respect to an enumeration b1, . . . , b|Bk| of the current boundary set Bk.

3.1.2.1 Target Features Three methods for vector population or feature selection

were considered here: raw frequency, conditional empirical probability, and monotonic
Bernoulli entropy, each of which is presented in detail below.

Raw Frequency Features Raw frequency vectors use the directed corpus frequency
directly to initialize the components of the feature vector, for 1 ≤ i ≤ |Bk|:

~wz,k(i) = fz,k(w, bi) (11)

Conditional Probability Features Conditional probability target vectors use the em-
pirical conditional distributions to populate the target features:

~wz,k(i) = Pz,k(bi|w) =
Pz,k(w, bi)

Pz,k(w)
(12)

Monotonic Bernoulli Entropy Features The Shannon entropy of a distribution p

is the average length of a message that an event from p has occurred under an optimal
encoding (Shannon and Weaver, 1949), and can be understood as a measure of the unpre-
dictability of the events in p, with 0 as a lower bound:7

H(p) = −
∑

x∈dom(p)

p(x) log2 p(x) (13)

A variant of the Shannon entropy is used here to populate context vector components
for target words. Although it is possible to compute entropy contributions for individual
events x (corresponding to the joint occurrence of a given target, bound pair), the resulting
function hp(x) = −p(x) log p(x) is not symmetric, since entropy is properly defined over

7Code lengths are conventionally expressed in bits, thus we use base 2 logarithms here and elsewhere,
omitting the subscript. An additional convention required for the computation of entropy is that 0 log 0 = 0.
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distributions rather than events. To accommodate this fact, a Bernoulli distribution is
assumed for each boundary element given a target word:

H(X ∼ b(1; px)) = −
∑

x∈{0,1}

p(x) log p(x) (14)

= −px log px − (1 − px) log(1 − px)

The Shannon entropy of Bernoulli distributions is indeed symmetric, and can be com-
puted from a single parameter px corresponding here to the empirical conditional prob-
ability of a boundary element given a target element. The resulting function is how-
ever non-monotonic: no difference is drawn between high- and low-probability events:
H(b(1; px)) = H(b(1; 1 − px)) for all p ∈ [0..1]. This property is desirable from an
information-theoretic standpoint, as it properly ascribes identical entropies to equivalent
distributions. For the current purpose of word-type context vector population however, it
is unintuitive to suppose that a high-frequency predictor (boundary element) and a low-
frequency predictor should be considered equivalent for the same target element.8 There-
fore, a modified function Ĥ based on the Shannon entropy of Bernoulli distributions is used
to populate target vector components for each boundary element:

Ĥ(px) =

{

H(b(1; px)) if px ≤ 1
2

2 − H(b(1; px)) otherwise
(15)

The function Ĥ – referred to henceforth as the “monotonic Bernoulli entropy” – applied to
pointwise boundary probabilities conditioned on targets can be intuitively understood as
a heuristic for estimating the mnemonic utility of “chunking” the boundary event into the
target event. Monotonic Bernoulli entropy is symmetric, restricted to the range [0..2], and
grows monotonically with its only parameter px. However, it is not in general the case that
the values of Ĥ(Pz,k(·|w)) result in meaningful comparison criteria over target words w, due
to the case differentiation in Equation 15. For this reason, an absolute mass of 1 is allotted
to each target word w ∈ Tk, allowing the population of target vectors with unit-normalized
conditional monotonic Bernoulli entropies of boundary elements given target words:

~wz,k(i) = H̃z,k(bi|w) =
Ĥ(Pz,k(bi|w))

∑

b∈Bk
Ĥ(Pz,k(b|w))

(16)

3.1.2.2 Prototype Clustering The characteristic feature vectors ~w for each target
w ∈ Tk were assembled into a 2|Bk| × |Tk| clustering matrix Mk, the rows of which cor-
respond to current target words, and the columns of which correspond to (monotonic
Bernoulli entropies of) bounds. In the initial prototyping stage, the targets (rows of the
data matrix) were clustered with a standard agglomerative hierarchical clustering algorithm
from the C Clustering Library package (de Hoon et al., 2004). Several distance measures

8Preliminary experiments supported this intuition.
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and link methods were used, which are formally presented in Sections 3.1.2.3 and 3.1.2.4,
respectively.

The resulting clustering tree was cut to produce a user-specified number of clusters.9 As
an alternative to specifying the number of clusters as a system parameter, the user might
instead specify a node linkage distance threshold, thus allowing the procedure to discover
an “optimal” number of clusters.

3.1.2.3 Distance Functions Three distance functions were considered in the experi-
ments described here: the L1 distance metric10 dL1 as used by Korkmaz and Üçoluk (1997),
Spearman’s rank correlation coefficient dS as used by Finch and Chater (1993), and the
vector cosine as employed by Schütze (1993, 1995). Of these, the simplest is the L1 dis-
tance, which is a true metric defined by the Minkowski 1−norm, ‖ · ‖1. Let nk = 2|Bk| be
the length of target vectors at clustering stage k, then:

dL1(~wk, ~vk) = ‖~wk − ~vk‖1 =
nk
∑

i=1

|~wk(i) − ~vk(i)| (17)

Both the vector cosine and Spearman’s rank correlation coefficient can be reduced to
Pearson’s correlation coefficient rP , itself defined in terms of the sample means µ and
standard deviations σ:

dP (~wk, ~vk) = 1 − rP (~wk, ~vk) (18)

where:

rP (~wk, ~vk) =
1

nk

nk
∑

i=1

(

~wk(i) − µ~wk

σ~wk

) (

~vk(i) − µ~vk

σ~vk

)

µ~xk
=

1

nk

nk
∑

i=1

~xk(i)

σ~xk
=

√

√

√

√

1

nk

(

nk
∑

i=1

~xk(i) − µ~xk

)2

The vector cosine can be reduced to Pearson’s coefficient by assuming that the vector
means µ~wk

and µ~vk
are zero:

dcos(~wk, ~vk) = 1 − rcos(~wk, ~vk) (19)

rcos(~wk, ~vk) =
1

nk

nk
∑

i=1





~wk(i)

σ
(0)
~wk









~vk(i)

σ
(0)
~vk





σ
(0)
~xk

=

√

√

√

√

1

nk

nk
∑

i=1

~xk(i)2

9In the experiments described, the number of output clusters was fixed at 50.
10L1 distance is also sometimes referred to as “taxi-cab”, “city-block”, or “Manhattan” distance.
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Spearman’s rank correlation coefficient is simply Pearson’s coefficient applied to vectors
of features’ ranks rather than to actual feature values. It is a non-parametric similarity
measure which is typically more robust with respect to outliers than the other distance
functions considered here.

dS(~wk, ~vk) = 1 − rP (ranks(~wk), ranks(~vk)) (20)

where:

ranks(~xk) = [rank(~xk, 1), . . . , rank(~xk, nk)]

rank(~xk, i) = min (πr(~xk, i)) +
|πr(~xk, i)|

2
πr(~xk, i) = {j | 1 ≤ j ≤ nk & ~xk(j) = ~xk(i)}

3.1.2.4 Link Methods For agglomerative hierarchical clustering, the link method de-
fines the manner in which the distance function d :

�
nk × �

nk → �
over individual target

vectors ~w,~v ∈ �
nk is extended to a function d̂ : P(

�
nk) × P(

�
nk) → �

over sets of
vectors W,V ∈ P(

�
nk). Without loss of generality, d̂(W,V ) will be written d(W,V ), and

d̂(W, {~v}) will be abbreviated d(W,~v).

Maximum-link defines the distance between clusters as the maximum pairwise distance
between their respective elements:

d̂max(W,V ) = max
~w∈W,~v∈V

d(~w,~v) (21)

Average-link defines the distance between clusters as the arithmetic average of the pairwise
distances between their respective elements:

d̂avg(W,V ) = avg
~w∈W,~v∈V

d(~w,~v) =
1

|W | × |V |
∑

~w∈W,~v∈V

d(~w,~v) (22)

3.1.2.5 Fuzzy Cluster Membership The primary output11 of each clustering stage
k is a cluster-membership probability distribution p̂k(·|·) : Tk × Ck → [0, 1] conditioned
on target words:

∑

c∈Ck
p̂k(c|w) = 1 for all w ∈ Tk. Standard hierarchical clustering

techniques provide only a univocal (“hard”) classification however, thus predicting for
each target w that p̂k(c|w) = 0 for all but one cluster c. In an attempt to approximate
the potential ambiguity of natural language word types, and to reduce the impact of
propagating erroneous clustering decisions from a stage k into later stages k + j, a fuzzy
cluster membership heuristic is employed.

11In the context of the full multi-stage procedure, the final output of each clustering stage must in-
corporate targets from all preceding stages into a membership probability distribution p̂≤k; for k = 1,
p̂≤k = p̂≤1 = p̂1. The ordering notation is extended in the obvious manner for all k > 1: p̂<k = p̂≤k−1.
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The distance measure and link-method used in the clustering algorithm itself provide the
most natural source of data on the basis of which to estimate p̂k: namely, the distances
between each target vector and each node identified as a cluster. The heuristic which
performed best in the experiments described here is defined in terms of the similarity
measure ŝ : Ck×Tk → �

given by Equation 23, which results in a variant of the exponential
form for membership distributions used by Pereira et al. (1993) and attributed to Jaynes
(1983). Let dk : P(

�
nk)×P(

�
nk) → �

be the distance function over sets of target vectors
in clustering stage k, and let βk > 0 be an inverse temperature parameter for stage k, then:

ŝk(c, w) = exp(−βkdk(c, ~wk)) (23)

The parameter βk was set to 1
k

at each stage k, which corresponds to a progressive “heating”
of the system, and therefore to increasing uncertainty with respect to the reliability of the
classifications made in successive stages. It should be noted that this behavior – justified by
Zipf’s law in that later-stage targets must be classified on the basis of a smaller sample than
early-stage targets and thus produce less reliable classifications – is precisely the opposite
of the simulated annealing techniques used by Pereira et al. (1993) and Lee (1997). By the
same analogy to physical processes, the manipulation of βk used here results rather in a
simulated melting procedure.

After some experimentation, it was determined that limiting the number of clusters to
which a target may be considered to belong with nonzero probability provided a useful
limitation of the search space. The natural language pendant of such a restriction is an
a priori upper limit on the degree of syntactic ambiguity of any given word. Let m be a
parameter specifying the maximum number of clusters to which a word w may belong with
nonzero probability,12 and let rankdk,w(c) be the rank of the distance between the target w

and the cluster c according to the distance function dk,
13 then Equation 23 becomes:

ŝk(c, w) =

{

exp(−βkdk(c, ~wk)) if 1 ≤ rankdk,w(c) ≤ m

0 otherwise
(24)

Given ŝ, the membership probability distribution p̂k can be estimated by:

p̂k(c|w) =
ŝk(c, w)

Zk,w =
∑

c′∈Ck
ŝk(c′, w)

(25)

3.1.3 Attachment Stages, k > 1

After the initial prototyping clustering stage, the boundary set Bk is defined as the set Ck−1

of clusters output by the previous clustering stage. This restriction results in a smaller

12In the experiments described below, the parameter m was set to 4.
13Given a list dk(c1, w), ..., dk(c|Ck|, w) sorted in ascending order of cluster distances with respect to w,

where i 6= j implies ci 6= cj , rankdk,w(c) = i for 1 ≤ i ≤ |Ck|. In the rank computation method used here,
equidistant clusters were assigned distinct ranks based on the order in which the clusters were established
during the prototyping stage.
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memory footprint and fewer computations at each stage, compared to simply including all
previous targets as unique elements of the boundary set in their own right. Additionally,
the use of clusters as boundary elements allows the system to capitalize on knowledge
gained by previous stages, and can be considered in this sense an extension of Schütze’s
(1995) dual stage word-type clustering procedure.

The mechanics of estimating expected bigram frequencies with respect to clusters are
detailed in Section 3.1.3.1. Section 3.1.3.2 describes the method for by which cluster
centroids are acquired. Finally, the procedure for classifying new targets with respect to
the acquired centroids is described in Section 3.1.3.3.

3.1.3.1 Cluster-based Boundary Profiling Since Bk = Ck−1 for stage k > 1, and
since the clusters b ∈ Ck−1 are not annotated directly in the input corpus, Equations
2 and 3 cannot directly be used to compute bigram frequencies, in terms of which the
instantiation of the characteristic feature-vectors for the clustering algorithm is defined.
The membership probability distribution p̂<k returned by the preceding clustering stage
however provides a natural starting point for the incorporation of previous solutions into
an expected frequency. Let T<k =

⋃k−1
i=1 Ti, then for w ∈ Tk and b ∈ Bk, define:

f`,k(w, b) =
∑

v∈T<k

p̂<k(b|v)f0(v, w) (26)

fr,k(w, b) =
∑

v∈T<k

p̂<k(b|v)f0(w, v) (27)

The modelling assumptions which allow us to derive Equations 26 and 27 from word-type
bigram distributions are made explicit in Equations 28–31 for left bigrams; the case for
right bigrams is analogous.

f`,k(w, b) = p`,k(w, b)N`,k (28)

p`,k(w, b) =
∑

v∈T<k

p`,k(v, w, b) (29)

p`,k(w, v) =
f0(v, w)

N`,k

(30)

p`,k(b|v, w) = p̂<k(b|v) (31)

Here, Equations 28 and 30 are just maximum-likelihood estimators for bigram probabilities.
Equation 29 simply defines the joint target-cluster bigram distribution p`,k(w, b) as the
marginal distribution obtained by summing over all potential cluster members v ∈ T<k.
Finally, Equation 31 asserts the conditional independence of boundary clusters b ∈ Bk from
target words w ∈ Tk given boundary words v ∈ T<k, allowing the use of the membership
probability distribution p̂<k to compute the marginal distributions.

Characteristic feature vectors ~wk for each new target w are then instantiated by com-
puting the relevant target features and concatenating left- and right-subvectors, as in the
prototyping stage.

13



3.1.3.2 Centroid Acquisition In order to classify new targets in terms of existing
clusters, a centroid profile matrix M̂k analogous to the target profile matrix Mk is created
for the clusters output by the preceding stage.

Let π<k : T<k → Ck−1 be the “hard” partitioning of previous targets computed by the
previous clustering stages, and let π−1

<k : Ck−1 → P(T<k) be its inverse relation: π−1
k (c) =

{w ∈ T<k | π<k(w) = c}. Then, expected frequencies for cluster centroids c ∈ Ck−1 are
estimated by summing over the frequencies of their elements:

fz,k(c, b) =
∑

w∈π−1

<k
(c)

fz,k(w, b) (32)

Important to note here is that the fuzzy cluster-membership heuristic is used only to smooth
a previous cluster’s behavior as a boundary element, and not its behavior as a centroid: for
the frequency profiling of cluster centroids, “hard” clusters are assumed, which increases
the distinguishability of centroid signatures.

Characteristic feature vectors ~ck for each centroid c ∈ Ck−1 are instantiated by the same
procedure used for new targets, giving rise to a 2|Bk| × |Ck−1| centroid profile matrix M̂k

over the same features as the target profile matrix Mk.

3.1.3.3 Attachment Given a target profile matrix Mk and a centroid profile matrix
M̂k, new targets can be assigned to existing clusters by an application of the Assign-to-

Nearest operator described by Cutting et al. (1992b), which simply assigns each target to
the “nearest” centroid, in the sense defined by the clustering distance function d.

Membership probabilities p̂k(c|w) for new targets w ∈ Tk can be directly computed by
Equation 25. Membership probabilities for previously clustered targets are left unchanged:

p̂≤k =
k
⋃

i=1

p̂i (33)

Since Ti ∩ Tj = ∅ for i 6= j, the membership distribution p̂≤k is a function with:

p̂≤k(c|w) =











p̂k(c|w) if w ∈ Tk

p̂<k(c|w) if w ∈ T<k

undefined otherwise

The membership probabilities thus estimated can be passed to the next clustering iteration
for the classification of new targets, or may be exported directly to the ambiguity resolution
phase.

3.2 Ambiguity Resolution Phase

Two methods for context-dependent token-level ambiguity resolution were considered: ap-
plication of the Baum-Welch algorithm to a first-order Hidden Markov Model initialized

14



with emission probabilities computed from the membership distribution p̂K , and a variant
of the trigram clustering technique presented by Schütze (1995).

3.2.1 Hidden Markov Model Reestimation

The membership distribution p̂≤K returned by the final clustering stage may be used to
initialize the emission probabilities of a Hidden Markov Model by an application of Bayes’
Rule. For w ∈ T≤K , c ∈ CK :

p̂≤K(w|c) =
p̂≤K(c|w)p̂≤K(w)

p̂≤K(c)
(34)

where:

p̂≤K(w) =
P`,K(w) + Pr,K(w)

2
(35)

p̂≤K(c) =
∑

w∈T≤k

p̂≤K(w, c) (36)

=
∑

w∈T≤k

p̂≤K(c|w)p̂≤K(w)

Transition and initial probabilities for the HMM were initialized with uniform distributions,
and the resulting models passed through several iterations of the Baum-Welch algorithm
for parameter reestimation. The multi-sequence form of the Baum-Welch algorithm as
described by Rabiner (1989) was used here, for which each sentence of the reestimation
corpus was treated as a single observation sequence.

3.2.2 Trigram Clustering

A different method for context-dependent resolution was explored by Schütze (1995), who
classifies word-type trigrams by reference to the left- and right-context vectors of their
component word types. For word types w1, w2, w3 ∈ A, let w1..3 = 〈w1, w2, w3〉 ∈ A3, then:

−−→w1..3 =
−−→
(w1)r ◦

−−→
(w2)` ◦

−−→
(w2)r ◦

−−→
(w3)` (37)

In Schütze’s method, prototype target trigrams were randomly selected, and context vec-
tors were populated with raw frequency features. In the experiments described here, a
variation was considered in which target trigrams were selected on the basis of their com-
ponents’ co-occurrence frequencies with word-type targets clustered by the word-type clus-
tering phase, and context vectors were populated as in the word-type attachment substages
by reference to expected co-occurrence frequencies with word-type clusters:

−−−→
(w1..3)K =

−−→
(w1)r,K ◦ −−→(w2)`,K ◦ −−→(w2)r,K ◦ −−→(w3)`,K (38)
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After clustering a selection of prototype trigrams, all remaining trigrams from the test
corpus were attached to the nearest trigram cluster centroid, thus providing a limited
mechanism for context-dependent ambiguity resolution.

3.3 Computational Complexity

Collection of unigram and bigram statistics from the training corpus has linear time com-
plexity, O(|S|), where |S| is the size of the training corpus. Ranking of word-types by
frequency using a good sorting algorithm will be O(|A| log |A|) on average. A clustering
schedule can be generated in constant time given the alphabet size.

The time complexity of the agglomerative hierarchical clustering algorithm used in the
prototyping stage is on average O(|T1|2 log |T1|) (Jain et al., 1999; Cutting et al., 1992b),
or more precisely O(|B1| × |T1|2 log |T1|).
Attachment of new targets to existing centroids is O(|Bk| × |Tk| × |Ck−1|). Let T =
1
K

∑K
k=1 |Tk| be the average number of targets clustered at any stage, let C = |C1| = · · · =

|CK | be the number of target clusters. Then, the total time complexity of the attachment
phases is O(KC2T ). Important to note is that the number of bounds (features) plays
a nontrivial role in the complexity of the clustering subphase, motivating the identity
Bk = Ck−1 used in the procedure described above, since C is likely to be small. Further,
if only a small number of initial targets and bounds are chosen (|T1| = |B1| ≤

√
CT ), the

total complexity of the prototyping and attachment phases will be O(KC2T ), which does
not exceed O(C2|A|).
Estimation of the membership probabilities p̂(·|·) can likewise be reduced to O (KC2T ),
since no full sort is required for a fixed value of the maximal ambiguity rate parameter m,
and since membership probabilities do not change for any given target once it has been
clustered.

The Baum-Welch algorithm has time complexity O (C2 × S), where |S| is the size of
the reestimation corpus. Trigram profiling with respect to word-type cluster centroids
is O (C|A|). Clustering of T3 trigram prototypes is then O (C2T3| log T3). Analogous to the
argument given above for the choice of initial word-type targets, trigram prototypes can
be chosen so that the total complexity of the trigram clustering and attachment procedure
does not exceed O (C2 × |A3|), where A3 = {uvw ∈ A3 | f0(uvw) > 0} is the set of all
actually occurring trigrams.

4 Results & Discussion

The system described in the previous section was implemented in Perl and C, and evalu-
ated on both German and English corpora. For German, the NEGRA corpus (Skut et al.,
1997) was used, which after preprocessing contained 355,096 tokens of 48,924 distinct or-
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Tag SUSANNE Tag(s) Description

ADV FA* FB* LE* XX Adverb

DET A* D* Determiner

CARD M* Cardinal number

CCONJ CC* Coordinating conjunction

POS G* Genitive marker

MISC FO* FU* FW* UH ZZ* Miscellaneous

NOUN N* BTO22 Nominal

PREP I* BTO21 Preposition

PRON P* EX Pronominal

PUNC Y* Punctuation

SCONJ CS* Subordinating conjunction

TO TO Infinitival to

VFIN V* (except V*0, V*G*) Finite verb form

VINF VB0 VD0 VH0 Infinitive verb form

VING VBG VDG VHG VVG* -ing verb form

Table 1: Tagset reduction scheme used for the SUSANNE corpus. The character “*” is
used a wildcard.

thographic forms. For English, a composite corpus comprised of the SUSANNE corpus
(Sampson, 1995) and the novel Great Expectations (Dickens, 2002) was used, which af-
ter preprocessing contained 374,640 tokens of 20,600 distinct orthographic forms. 10% of
the sentences in each corpus were randomly selected and reserved for testing. For En-
glish, the test corpus sentences were drawn exclusively from the tagged SUSANNE corpus.
Training corpora were annotated only with sentence- and token-boundaries. All alphabetic
characters were converted to lower case. Punctuation marks were preserved as individual
tokens.

The primary method of evaluation was a simple meta-modelling strategy similar to that
used by Schütze (1995): words in the linguistically motivated gold standard corpora were
replaced with tag identifiers for the induced clusters, and a supervised unigram tagger was
trained to tag the induced clusters with linguistically motivated “gold-standard” tags. The
accuracy of the meta-model is assumed to be an indicator for the precision of the induced
classification.14 For both languages, a reduced tagset was used as the gold-standard for
meta-tagging. For English, the tagset reduction scheme given in Table 1 was used. For
German, the tagset reduction scheme given in Table 2 was applied.

The use of an additional model to evaluate the induced classification is undesirable for a
number of reasons, primarily because the meta-model introduces an additional potential
source of error. For this reason, the simplest meta-model – a unigram model – was chosen
as a meta-tagger. While certainly a limited model, its capabilities and limitations are

14Non-targets were treated as incorrect tag assignments.
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Tag STTS Tag(s) Description

ADJ ADJA ADJD PIDAT Adjective

ADV ADV APPO APZR PAV PROAV PTKA PTKANT PTKNEG

PTKVZ PWAV

Adverb

CARD CARD Cardinal number

CCONJ KON Coordinating conjunction

DET ART PDAT PIAT PPOSAT PRELAT PWAT Determiner

MISC FM ITJ XY Miscellaneous

NOUN NE NN TRUNC Nominal

PREP APPRART APPR Preposition

PRON PDS PIS PPER PPOSS PRELS PRF PWS Pronominal

SCONJ KOKOM KOUI KOUS Subordinating conjunction

TO PTKZU Infinitival zu

VFIN VAFIN VAIMP VMFIN VVFIN VVIMP Finite verb

VINF VAINF VAPP VMINF VMPP VVINF VVIZU VVPP Infinitive, participle

$, $, Comma

$. $. Sentence-final punctuation

$( $( Sentence-internal punctuation

Table 2: Tagset reduction scheme used for the STTS source tagset.

well known, and the data it returns is used solely to compare variants of the classification
procedure.

More difficult to address are principled rejections of the comparison of an induced classifi-
cation with a linguistically motivated hand-annotated tagset, such as the argument given
by Clark (2001). The core of the argument is that an induced classification may well re-
veal real and useful distributional properties of the target language which are not encoded
in the linguistic-theoretically motivated corpus used as a gold-standard, thus rendering
the results of any comparison between the two meaningless. The use of a reduced tagset
for meta-tagging is intended to address these concerns by keeping theoretical bias to a
minimum.

4.1 Clustering Phase

The multi-stage clustering procedure described above was first compared to a number
of single-stage procedures each using a fixed set of boundary words. Data from these
experiments are presented in Figure 1. From these data, it is easy to see that the multi-stage
approach is considerably more stable for a large number of targets than any of the single-
stage procedures to which it was compared. This fact is believed to be a direct consequence
of the integration of previous clustering solutions into the feature selection process for the
attachment stages, thus providing a workaround for the well-known sparse data problem.
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Figure 1: Multi- vs. single-stage clustering meta-accuracy for German, for all tokens (left)
and for targets only (right). Hardware limitations prevented collection of the full range
of data for the single-stage condition |B| = |T |, in which target and boundary sets were
considered identical.

Use of the fuzzy membership heuristic provided only a comparatively small additional
improvement. Happily, the multi-stage procedure also has much more modest time and
space requirements (linear, as opposed to quadratic) than a single-stage procedure, as
discussed in Section 3.3.

Meta-tagging accuracy for selected combinations of feature instantiation method, distance
function, and clustering link method is shown for all test-corpus tokens in Figure 2, and for
clustering targets in Figure 3. For both English and German, pairwise average linkage using
the vector cosine performed most poorly, and maximum-link clustering using Spearman’s
rank correlation between monotonic Bernoulli entropy vectors performed best, resulting in
a meta-tagging accuracy on targets of 81.56% after the final clustering stage for German,
and 80.12% for English. Interesting to note is that for English, Finch and Chater’s (1993)
method performed similarly well, returning a meta-tagging accuracy on targets of 79.71%
after the final stage, while this configuration resulted in a target meta-tagging accuracy of
only 76.17% for the German corpus.

This discrepancy may stem from the relatively fixed word order of English compared to
German, in that highly predictive, high-probability boundary elements are more likely to
occur only to one side of an English target word, while such bounds may be distributed
among both left and right contexts in German. German morphology – in particular its
high productivity with respect to nominal composites – may also play a role in the poor
performance of empirical conditional probabilities here, as it leads to a large alphabet size
and thus compounds the sparse data problem: the German corpus contained over twice as
many word types as the English corpus, despite the fact that the corpora were of similar
size in terms of tokens.
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Figure 2: Meta-accuracy for selected clustering configurations for German (top)and English (bottom), by number of
targets (left) and by clustering stage (right).
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Figure 3: Meta-accuracy on targets for selected clustering configurations for German (top) and for English (bottom), by
number of targets (left) and by clustering stage (right).
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Figure 4: dL1(Ĥ(p), Ĥ(q)): 1-norm distance between monotonic Bernoulli entropy values
for probability parameters p and q.

Use of monotonic Bernoulli entropy to populate target vectors performs similarly well
for both German and English, which supports the hypothesis that it is capable of cap-
turing linguistically useful distributional properties. In Section 3.1.2.1, it was suggested
that monotonic Bernoulli entropy could be intuitively understood as an estimator for the
mnemonic utility of “chunking” a boundary event into a target event, since it is sensitive
both to absolute probability value and to outcome predictability.

The L1 distance between monotonic Bernoulli entropies is presented as a surface projection
and as a palette map in Figure 4. From these presentations, it is easy to see that small
probability differences result in particularly large distance differences near the extrema
0 and 1, thus expressing Ĥ’s sensitivity to bounds as predictors. Sensitivity to absolute
probability value is expressed by the asymmetries of the p and q axes. The “pocket” in
which little differentiation is made – roughly in the range 0.4 ≤ p, q ≤ 0.6 – is unlikely
to be occupied in the case of the empirical distributions under consideration, providing an
a posteriori account of the method’s utility.

4.2 Ambiguity Resolution Phase

The primary goal of the ambiguity resolution phase was to recover token-level ambiguity
on a context-dependent basis. In addition to meta-tagging accuracy therefore, the average
ambiguity rates for each of the ambiguity resolution methods were considered. Ambiguity
rates were computed as the number of 〈word, analysis〉 pairs in the test corpus as tagged
by the ambiguity resolving method under consideration divided by the total number of
word-types in the test corpus. Input to the ambiguity resolution procedures was the mem-
bership probability distribution p̂k returned by the final or some intermediate clustering
stage. Ambiguity resolution was tested only for maximum-link word-type clustering us-
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Figure 5: Meta-tagging accuracy during HMM reestimation
.

Baum-Welch Global Targets
Iteration Amb. Rate Meta-Acc. Amb. Rate Meta-Acc.

p̂K(c|w) 1.00 74.13 % 1.00 81.56 %

0 1.00 69.32 % 1.00 69.67 %

4 1.22 73.60 % 1.31 75.66 %

8 1.29 73.58 % 1.40 75.35 %

12 1.32 72.83 % 1.46 74.48 %

16 1.34 72.67 % 1.49 74.25 %

20 1.35 72.41 % 1.50 73.91 %

Table 3: Ambiguity resolution performance of HMM reestimation for the German corpus.

ing Spearman’s rank correlation distance between context vectors of monotonic Bernoulli
entropies. The training and test corpora were the same as those used in the clustering
phase.

4.2.1 Hidden Markov Model Reestimation

Baum-Welch reestimation of first-order Hidden Markov Models initialized as described in
Section 3.2.1 do indeed provide an increasing degree of context-dependent token-level am-
biguity resolution, but performed poorly with respect to meta-tagging accuracy.15 Selected
data for Hidden Markov Model reestimation ambiguity resolution are given in Tables 3 and
4, and graphically presented in Figure 5.

15The Baum-Welch algorithm for HMM reestimation was applied to the test corpus. For model evalua-
tion, the Viterbi (1967) algorithm was used to determine the optimal tag sequence for each input sentence.
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Baum-Welch Global Targets
Iteration Amb. Rate Meta-Acc. Amb. Rate Meta-Acc.

p̂K(c|w) 1.00 76.72 % 1.00 80.12 %

0 1.00 70.11 % 1.00 70.88 %

4 1.37 73.60 % 1.46 74.90 %

8 1.48 73.60 % 1.59 74.71 %

12 1.56 73.99 % 1.68 75.12 %

16 1.61 73.88 % 1.75 75.00 %

20 1.65 73.71 % 1.80 74.77 %

Table 4: Ambiguity resolution performance of HMM reestimation for the English corpus.

Unfortunately, none of the reestimated models exceeded the meta-tagging accuracy of the
final clustering phase (labelled p̂K(c|w) in Tables 3 and 4). The large discrepancy (ca.
5%) in meta-tagging accuracy between unambiguous cluster assignment and the iteration-
0 HMM initialized only with emission probabilities is particularly unintuitive. One major
cause of this phenomenon are the large number of zero probabilities introduced by the
ambiguity-limiting parameter m, which result in the allocation of too great a probability
mass to small clusters during the initialization of emission probabilities by Equation 34.16

Overall, the pattern displayed by reestimation of the HMMs initialized with clustering
output distributions appears to correspond to that which Elworthy (1994) termed “early
maximum”. This may be due to the fact that the fuzzy membership heuristic described in
Section 3.1.2.5 is too lenient, leading the “expect” step of the Baum-Welch algorithm to
assign greater expected frequencies than are desired to non-optimal 〈word, cluster〉 pairs.
Additional experiments employing an intermediate “shock-freezing” step to stabilize the
cluster membership distribution17 prior to HMM initialization produced good unambiguous
initial models, but showed a clear “initial maximum” pattern for reestimation, with meta-
tagging accuracy dropping ca. 15% after the first Baum-Welch iteration.

Another likely and deeper-lying source of error are the independence assumptions given in
Equation 31 used during the clustering phase to approximate word-type ambiguity, and
used implicitly in Equation 34 in the initialization of the Hidden Markov Model emission
probabilities. These assumptions – that a cluster (state) is independent of neighboring
words (emission symbols) given the current word – are simply not compatible with the
assumptions required for first-order hidden Markov modelling, according to which the
probability of a state depends not only on the emitted symbol, but also on the preceding
state. It is therefore doubtful whether the clustering procedure can be made compatible

16Additional experiments in which the ambiguity limit was discarded for the reestimation phase sup-
ported this claim, but the resulting models performed even more poorly during Baum-Welch reestimation
than those for which the ambiguity limit was applied.

17By the same physical analogy responsible for “simulated annealing”, “shock freezing” was computed
as: p̂′k(c|w) = p̂k(c|w)β′

/Z ′
k,w, for an inverse temperature parameter β′ > 1.
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Clustering German English
Stage Amb. Rate Meta-Acc. Amb. Rate Meta-Acc.

p̂K(c|w) 1.00 74.13 % 1.00 76.72 %

7 1.25 73.57 % 1.52 73.86 %

8 1.23 75.25 % 1.53 74.57 %

9 1.24 77.08 % 1.51 74.49 %

10 1.25 75.59 % 1.55 74.83 %

Table 5: Global meta-accuracy and ambiguity rates for trigram clustering.

with first-order HMM assumptions without directly estimating transition probabilities prior
to HMM initialization.

4.2.2 Trigram Clustering

The trigram clustering technique proposed by Schütze (1995) — which might be indirectly
used to provide better estimates of HMM transition probabilities — was also implemented
and evaluated as a method for context-dependent token-level ambiguity resolution. The
German corpus contained 311,389 distinct trigram types with nonzero frequency, and the
English corpus contained 276,604. Of these, 4000 trigram types were selected for prototype
clustering based on their components’ co-occurrence frequencies with previously clustered
targets.

Component context vectors were constructed by expected frequency profiling as in the
word-type clustering attachment stages. The resulting 4C×4000 matrix was then clustered
with an agglomerative hierarchical maximum-link clustering procedure using Spearman’s
rank correlation distance. The resulting tree was cut to produce 50 clusters. Each of the
remaining trigram types from the test corpus was then profiled and assigned to the nearest
cluster centroid. For evaluation purposes, the cluster assigned to a trigram w1w2w3 ∈ A3

was interpreted as an induced syntactic category for the token w2 in the immediate context
w1 w3.

Meta-tagging accuracies for trigram clustering after selected word-type clustering stages
are given in Table 5. The label p̂K(c|w) indicates the unambiguous baseline output of the
word-type clustering stage. No clear conclusions can be immediately drawn from these
data. While token-level ambiguity resolution was reintroduced by trigram clustering, this
often occurred at the expense of global meta-tagging accuracy. Clear gains in meta-tagging
accuracy were observed for the German corpus, but in the case of the English corpus, the
unambiguous output of the word-type clustering phase outperformed all of the trigram
clustering configurations tested. It is believed that a more sophisticated technique for the
selection of prototype trigrams may be of help in this regard.
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5 Outlook

A two-phase method was presented for learning a function which assigns induced syntactic
categories to individual word tokens which combines an iterative clustering method over
word types with existing methods for inducing context-dependent token-level ambiguity
resolution. Iterative application of standard clustering techniques using the output of
previous stages in a simulated melting procedure was shown to be both more efficient and
more stable over a larger number of target words with respect to meta-tagging accuracy
than previously employed single-pass clustering methods.

Baum-Welch reestimation for Hidden Markov Models initialized with cluster membership
probabilities did indeed recover token-level ambiguity resolution, but many of the ambi-
guities induced by this method were spurious, causing it to display an “early maximum”
pattern in the sense of Elworthy (1994). Trigram clustering using the output of the word
clustering stage for component profiling also reintroduced token-level ambiguity resolution,
but only exceeded the baseline meta-tagging accuracy of the word-type clustering stage for
the German corpus.

Future research will investigate more sophisticated methods for trigram prototype selection,
as well as additional combinations of the clustering and ambiguity resolution techniques
described above. Interpolation of reestimated Hidden Markov Models with a cluster uni-
gram model estimated from the clustering phase’s membership distribution may mitigate
the sharp drop in meta-tagging accuracy for iteration-0 HMMs. Alternately, trigram clus-
tering over the training corpus might provide better initial estimates of HMM transition
probabilities prior to reestimation, thus mitigating the effects of unwarranted independence
assumptions in the word-type clustering phase.
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E. E. Korkmaz and G. Üçoluk. Choosing a distance metric for automatic word categoriza-
tion. In D. M. W. Powers, editor, Proceedings of NeMLaP3/CoNLL98, pages 111–120.
Association for Computational Linguistics, Somerset, New Jersey, 1998.

27

http://www.gutenberg.org/etext/1400


L. Lee. Similary-Based Approaches to Natural Language Processing. PhD thesis, Harvard
University, Cambridge, MA, 1997.

J. G. McMahon and F. J. Smith. Improving statistical language model performance with
automatically generated word hierarchies. Computational Linguistics, 22(2):217–247,
1996.

F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English words. In ACL 31,
pages 183–190, 1993.

L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

A. Roberts. Automatic acquisition of word classification using distributional analysis of
content words with respect to function words. Technical report, School of Computing,
University of Leeds, 2002.

G. R. Sampson. English for the Computer: The SUSANNE Corpus and Analytic Scheme.
Clarendon Press, 1995.

H. Schütze. Part-of-Speech induction from scratch. In ACL 31, pages 251–258, 1993.

H. Schütze. Distributional part-of-speech tagging. In EACL 7, pages 141–148, 1995.

C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. University
of Illinois Press, Urbana, IL, 1949.

W. Skut, B. Krenn, T. Brants, and H. Uszkoreit. An annotation scheme for free word
order languages. In Proceedings of ANLP-97, Washington, DC, 1997.

A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimal decoding
algorithm. IEEE Transactions on Information Theory, pages 260–269, April 1967.

G. K. Zipf. Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cam-
bridge, MA, 1949.

28


	Introduction
	Related Work
	Language Modelling Approaches
	Linguistically Motivated Approaches

	Method
	Clustering Phase
	Ambiguity Resolution Phase
	Computational Complexity

	Results & Discussion
	Clustering Phase
	Ambiguity Resolution Phase

	Outlook
	References

