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Abstract

We describe Dsolve, a system for the segmentation of morphologically complex German
words into their constituent morphs. Our approach treats morphological segmentation as
a classification task, in which the locations and types of morph boundaries are predicted by
a Conditional Random Field model trained from manually annotated data. The prediction
of morph-boundary types in addition to their locations distinguishes Dsolve from similar
approaches previously suggested in the literature. We show that the use of boundary types
provides a (somewhat counter-intuitive) performance boost with respect to the simpler
task of predicting only segment locations.

1 Introduction

The goal of the morphological segmentation of words is their decomposition into morphemes
(lexical level) or morphs (text level), each of which may be associated with a lexical mean-
ing and/or a grammatical function. The segmentation of a word into morphemes is often
referred to as deep segmentation, and is contrasted to surface-level segmentation into morphs
(cf. e.g. [5]). Given the segmentation of the German compound Arztekammern (engl. “medical
associations”) into Arzt—e—K@mmer—n, the difference between the deep and the surface levels
is observable in the segment Arzt, which is a variant of the noun Arzt (engl. “doctor”) which
may only be realized in the plural. Arzt and Arzt are distinct surface realizations — called
allomorphs — of the morpheme {Arzt}. The task of surface-level morphological segmentation
of a word can be viewed as identification on the one hand of the word formation operations
which contribute to the word’s construction (i.e. compounding, derivation, inflection) and of
the morphs which constitute the operands of these operations on the other.

Morphological segmentations have many applications in (computational) linguistics, in-
cluding information retrieval [19], language learning [2], and letter-to-sound conversion [6].
In the following, we present Dsolve, a system for surface-level segmentation of words based
on supervised training of a conditional random field model (CRF) [17]. In order to classify
our approach, we first give an overview of the related literature. We then describe Dsolve in
more detail, evaluate its performance on a modest set of manually annotated German words,
and conclude with some insights and loose ends.

*Originally appeared in C. Mahlow and M. Piotrowski (Eds.), Systems and Frameworks for Computational
Morphology (SFCM 2015), CCIS 537, pp. 94-103, 2015. The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-23980-4_6.



2 Related Work

Approaches to automatic morphological segmentation can be classified based on two char-
acteristics. The first of these is the distinction between methods which rely on the manual
specification of potential morph(eme) combinations — typically using some grammar formal-
ism — and those which automatically induce such knowledge from un-annotated language
data using distributional inference. The second characteristic is whether the approach in
question makes use of some list or lexicon of (free) morphemes or not. Such a list can sub-
stantially increase quality of the results, but is often associated with a great deal of manual
effort.

Traditional finite-state or two-level approaches [1] use manually constructed rules together
with an extensive lexicon. The initial cost of creating a reliable system is thus quite high.
The scope of finite-state morphologies usually includes other applications such as base-form
reduction, word categorization, or lexical-semantic analysis. This broad scope often implies
the inclusion of morphologically complex forms into the underlying lexica, which adversely
affects their performance on the task of morphological segmentation. For German, the most
prominent systems are GERTWOL [12], SMOR [27], and TAGH [9], which are either closed-
source commercial products (GERTWOL and TAGH) or suffer from the aforementioned over-
lexicalization issue (SMOR and TAGH).

A great number of proposals have been made to reduce the effort involved in the creation
of morphological analysis systems. Omne class of proposals makes use of the fact that the
number of affixes is much smaller than the number of free morphemes. Such affiz removal
stemmers [8] successively remove known affixes from words under the assumption that the
remaining string is the word stem [22, 24].

In statistical methods, linguistic knowledge is represented as a probability distribution
over some atomic unit which is inferred from language data. In unsupervised settings (some-
times called morphology induction), these data are raw (i.e. unannotated) texts. Important
works in this category include [7, 10, 3, 4]. All of these approaches have in common that they
aim at constructing lists of possible morph(eme)s using a set of pre-defined heuristics. The
identification of morph(eme)s occurs by means of reference to character or string frequen-
cies. In [10] for example, an underlying word structure prefiz? stem suf fixx is assumed
in order to identify so-called signatures, classes of stems which occur with common affixes.
The performance of systems trained in an unsupervised manner is surprisingly high (com-
pare for example the results of Morpho Challenge, [16]), but still insufficient for productive
applications.

The inclusion of manually segmented words in the training process (so called semi-supervised
settings) can improve the performance of statistical methods dramatically [15]. An early
instance of a data-driven approach which is trained in a completely supervised manner is
MOSES [14]. For each bigram of adjacent characters in a word, the most likely intervening
boundary type is selected on the basis of the boundary type distributions in the training ma-
terial. Following this idea, there have been a number of proposals which focus on modeling
the relation between local substrings and morph(eme) boundaries. Dsolve itself falls into this
category, and we elaborate on the precise nature of the relation to be modeled below.

CRF's have previously been applied to word segmentation in Chinese in [29]. Studies on
morphological segmentation of languages with alphabetic writing systems were carried out on
Arabic [11, 25], English [2, 25, 26], Finnish [25, 26], Hebrew [25] and Turkish [25, 26].
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Figure 1: The German noun compound Gefolgsleuten (engl. “henchmenyyrryvg”) boundary
classified using (a) a binary classification scheme and (b) a type-sensitive classification scheme.

3 Morphological Segmentation as Sequence Classification

Sequence classification is a popular technique in natural language processing, already having
been used successfully e.g. for tokenization, part-of-speech tagging, and named entity recogni-
tion. At its core, the sequence classification task is defined in terms of a given set of symbols
O and a set of classes C', and maps each symbol o; € O in an observation string o =01 ...0y,
onto a class ¢; € C by determining the most probable string of classes ¢ = ¢; ... ¢, associated
with o by an underlying stochastic model. Individual statistical models differ in the man-
ner in which the most probable classes are calculated. Hidden Markov models for example
optimize the joint probability P(o,c) [23], while CRFs optimize the conditional probability
P(clo) [31].1

For the task of morphological segmentation, the set of symbols is simply the surface
character alphabet itself (or the set of character N-grams over this alphabet [14]). The set of
target classes is usually two-valued (e.g. C'= {0, 1}), leading to a classifier which predicts for
every position ¢ whether or not there is a segment boundary following (rsp. preceding) the
observed symbol at position ¢ of the input word, as illustrated in Figure 1a.

Some approaches (e.g. [14, 25]) use more complex classification schemes in order to define
morph(eme)s as spans in words (e.g. C' = {B, I, E,S} with B indicating the initial charac-
ter of a multi-character morph, I a character inside a multi-character morph, E the final
character of a multi-character morph, and S a single-character morph. Since such a span-
based classification may result in inconsistent predictions, further disambiguation heuristics
are required to interpret the classification results.

The mere detection of boundaries is itself however insufficient for some applications. Con-
sider for example the task of syllabification which in most languages follows the maximum
onset principle [28]. In German, the morphological structure of words overrides this principle
in cases of prefixion and compounding. Dsolve attempts to accommodate such phenomena by
using a type-sensitive classification scheme: Cpgove = {+, #, ~, 0}, where ‘4’ indicates that
a prefix morph ends at the current position, ‘#’ indicates that a free morph starts with the
following position, ‘~’ indicates that a suffix morph starts with the following position, and 0
indicates that there is no morph boundary after the current position. An example using this
classification scheme is given in Figure 1b.

We chose CRFs as the computational framework for the classification task. CRF's are a
class of stochastic models using chain-structured undirected graphs to encode the dependen-
cies between observations and output labels (i.e. classes). These dependencies are expressed
in terms of feature functions representing salient properties of the input. Feature functions

! Although as correctly noted in [23], any class-string ¢ which maximizes P(c, o) will also maximize P(c|o)
if the observation string o is held fixed.



depending on external data sources, distributional properties such as “successor frequency”
[13] as extracted from a large corpus of (un-annotated) data [26], or the distinction between
vowels and consonants [2] have also been proposed for the current task.

In the case of Dsolve, we defined a simple feature inventory using only unigram features
based on local string context. Each position ¢ in the input string o = 01 ...0, is assigned a
feature for each substring of o of length m < N within a context window of N — 1 characters
relative to position ¢ (including implicit word boundary symbols with pseudo-indices 0 and
n+1). Formally, a Dsolve model of “order”? N has 2N? — er\rizl m distinct feature functions
fjk, where —N < j < k < N and k —j < N, with f]k(ol) = 0i4+jO0i+j+1 """ Oj+k—10i+k- A
model with N = 3 for example has 12 distinct feature functions. If o = sport, then o3 has the
non-zero features {f:22 = ‘g, f:21 = ‘sp’, 2y = ‘spo’, f:ll =p, f° = ‘po, fl, = ‘por’,fg =
‘O, fa = tor', f2 = ‘ort’, fl = ‘v, f} = ‘rt’, f2 = ‘’}. During model training, the influence
of each feature expressed as a real-valued weight is optimized with respect to a manually
classified training set. For the current experiments, optimization was performed by means of
the L-BGFS algorithm [20].

4 Evaluation

In this section, we investigate the influence of model order on the tasks of boundary detection
and optional classification of word-internal morph boundaries. We report model performance
in terms of string accuracy (acc), precision (pr), recall (rc), and the and unweighted precision-
recall harmonic average F' [30]. For evaluation purposes, given a finite set W of annotated
words and a finite set C' of boundary classes with 0 € C' the designated non-boundary class,
we associate with each word w = wyws ... w,, € W a partial relevant boundary-placement
function Bielevant,w : N — C\{0} such that Biclevant,w(i) = c if and only if there exists a
manually annotated morph boundary of type ¢ € C' in the word w between the characters
w;—1 and w;, 1 < i < m. The retrieved morph-boundary placement function Bretrieved,w 1S
defined analogously based on the output of the CRF labelling. The evaluation quantities for
the detection and classification task can then be defined in the usual manner:

pr = |relevant Nretrieved| / |retrieved| (1)
rc = |relevant Nretrieved| / |relevant| (2)
F o= (2prro) / (prrc) 3)
acc = Hw ew | Bretrieved,w = Brelevant,w}| / ‘W‘ (4)

where:
relevant = Uwew{w} X Brelevant,w = {(w,1,¢) | (i = ¢) € Brelevant,w } (5)
retrieved = UweW{w} X Bretrieved,w = {(w7 i) C) ’ (Z — C) S Bretrieved,’w} (6)

Evaluators for the detection-only task can be defined identically, after mapping all boundary
types ¢ € C\{0} to a single, shared value.



Boundary Symbol | pr% rc% F% acc%

+ 92.05 97.20 94.56 n/a
# 96.01 93.28 94.63 n/a
~ 93.28 92.66 9297 n/a

TOTAL[+types] |93.74 93.74 93.74 87.40
TOTAL[—types] |96.20 96.20 96.20 87.40

Table 1: Comparison of two independent manual segmentations of a sample of Dsolve’s train-
ing materials.

4.1 Materials

We created a list of 15,522 distinct German word-forms and manually annotated types and
locations of all word-internal morph boundaries. In unclear cases, we consulted canoo.net
and/or the Etymologisches Worterbuch des Deutschen [21]. If multiple correct segmentations
were applicable, we randomly selected one of them. Candidate word-forms were selected
from various corpora in the collection of the Zentrum Sprache at the Berlin-Brandenburg
Academy of Sciences and Humanities®. A total of 21,068 word-internal morph boundaries
were annotated in this fashion. In the interest of providing an accurate approximation of
the morph boundary distribution in German and to guard against false-positive boundary
predictions, 3,555 monomorphemic words were also included in the list. The complete list
is published under the terms of the CC BY-SA 3.0 license, and is available for download at
http://kaskade.dwds.de/$\sim$moocow/gramophone/de-dlexdb.data.txt. In order to
provide an assessment of the plausibility of our segmentations, we created explicit written
annotation guidelines and asked a professional linguist of our acquaintance to edit a sample
of 1,000 words accordingly. The results of a comparison to our segmentation is shown in
Table 1, where our segmentations as above are interpreted as “relevant” boundaries, and
the independent third-party segmentations provide the “retrieved” boundaries. Training and
run-time application of CRFs were performed with the wapiti toolkit [18].

4.2 Method

The evaluation data was randomly partitioned into ten chunks of approximately equal size
and evaluated by 10-fold cross-validation. For each of the ten training subsets and for each
model order N with 1 < N <5, we trained two CRF model variants using a context window
of N characters for CRF model features as described in Section 3. The first model variant,
which we designate with the subscript [+types] predicts both boundary location and type by
internal use of 3 distinct boundary labels for prefix-, stem-, and suffix-boundaries, respectively,
in addition to a designated label for non-boundaries. The second model variant, indicated
by the subscript [—types]|, uses only two labels indicating the presence or absence of a morph
boundary, regardless of its type. For purposes of comparison, we also included results on the

2Note that our use of “model order” in this paper refers only to the context window size used to define the
feature function inventory, and is unrelated to the order of linear-chain feature dependencies in the underlying
CRF models.

3http://www.bbaw.de



pr% rc% F% acc%
27.27 0.01 0.03 22.84
70.84 60.92 65.51 47.29
85.23 82.64 &83.91 70.60
91.39 &8.77 90.07 80.50
93.46 90.67 92.04 83.50

S N N V4

Table 2: Evaluation results for Dsolve on the combined boundary-detection and classification
task for [+types|] model variants.

Prefix-Stem (+) | Stem-Stem (#) | Stem-Suffix (~)
pr% rc% F% | pr% rc% F% | pr% rc% F%

- 0.00 —127.27 0.05 0.10 0.00 -
63.97 50.25 56.28 | 71.47 51.27 59.71 | 72.65 69.83 71.21
83.62 85.65 84.63 |87.27 77.31 81.99|84.89 84.31 84.60
92.44 92.35 92.39(93.04 86.07 89.42|90.21 88.87 89.54
95.57 94.68 95.1295.01 88.83 91.81|91.92 90.16 91.03

Tk w o~ 2

Table 3: Detailed results for Dsolve boundary classification by boundary type.

boundary detection task for both Morfessor FlatCat* as well as a wapiti re-implementation
of the span-based CRF model described in [25] as methods “FlatCat” and “spanCRE”, re-
spectively. Each trained model was applied to the respective disjoint test subset, and the
evaluation quantities defined above were computed for the concatenation of all test subsets.

4.3 Results & Discussion

Evaluation results for the joint task of boundary detection and classification are given in
Tables 2 and 3, and results for the boundary detection task modulo classification are given in
Table 4. Note that since the [—types] model variants were incapable of predicting boundary
classes, they were not considered for the joint detection and classification task.

The most prominent effect observable in the data is the fact that all evaluation quantities
increase monotonically as model order grows. Such a tendency is common for n-gram models
of natural language phenomena, and can be interpreted in the current case as a lexicalization
effect: as model order grows, the induced models are able to incorporate information on the
distributions of increasingly long whole morphs. This hypothesis is supported on the one
hand by the data from Table 3, indicating that the induced models performed most poorly
for strong (#) morph boundaries — which necessarily occur between comparatively long stem
morphs — and on the other hand by the disproportionate performance gain of the models with
orders 2 and 3 with respect to their predecessors, since most German prefixes and suffixes are
of length 2 or 3.

Unsurprisingly, comparing the quantities for the [+types| model variants from Tables 2
and 4 shows that the task of morph boundary detection is in some sense easier than the joint

‘http://www.cis.hut.fi/projects/morpho/morfessorflatcat.shtml; FlatCat models were trained with
perplexity threshold 10.0 using annotated corpus data in semi-supervised mode.



Method Variant N | pr% rc% F% acc%
FlatCat - - 179.18 89.48 84.01 75.27
spanCRF - 1 140.33 9.57 1547 24.13
spanCRF - 2 | 7735 71.80 74.47 55.04
spanCRF - 3 | 88.43 87.52 87.97 74.49
spanCRF - 4 192.83 91.33 92.08 82.57
spanCRF - 5 193.56 92.29 92.92 84.45
Dsolve +types 1 |36.36 0.02 0.04 2284
Dsolve +types 2 | 79.45 68.32 73.47 53.16
Dsolve +types 3 | 89.36 86.64 87.98 74.35
Dsolve +types 4 |93.49 90.81 92.13 82.55
Dsolve +types 5 | 94.46 91.63 93.02 84.36
Dsolve —types 1 |[56.34 0.2 1.42 23.03
Dsolve —types 2 | 77.53 69.61 73.36 52.94
Dsolve —types 3 | 88.81 86.58 87.68 73.70
Dsolve —types 4 [92.93 90.78 91.85 81.92
Dsolve —types 5 |93.89 91.73 92.80 83.98

Table 4: Evaluation results on the boundary-detection task for Dsolve variants both with
(+types]) and without (—types) model-internal use of distinct boundary classes.

task of boundary detection and classification. Since both the models and data-set partitions
used for evaluation were identical, the observed differences are clearly due to the fact that
some “errors” in the joint task arose from incorrect predictions of boundary types, albeit at
the correct positions: Brelevant,w (i) = ¢ # ¢ = Bretrieved,w(%)-

Both of the Dsolve model variants as well as the spanCRF models substantially outper-
formed the Morfessor FlatCat baseline for all model orders N > 3. The Dsolve[+types]
model variants performed quite similarly to the closely related spanCRF models. For N > 1,
the Dsolve[+types|] models were slightly more precise than the spanCRF models of the same
order, while the latter achieved slightly higher recall rates. Since the Dsolve[+types| errors
were more uniformly distributed between false positives and false negatives for N > 3, these
achieved a higher harmonic average F than their spanCRF counterparts, although the lat-
ter were slightly more successful in terms string accuracy. Due to the limited size of the
test corpus, differences on the order of magnitude observed between the Dsolve[+types] and
spanCRF models must be viewed with a modicum of skepticism: the differences for N = 5
for example stem from a total of only 136 boundary errors and 13 string errors.

Despite the simplicity of the detection-only task, the Dsolve[+types] model variants mak-
ing use of distinct boundary classes consistently outperformed the [—types] variants using a
only binary label set for all model orders N > 1 in terms of both precision and string accuracy,
leading to a relative error reduction of 9.33% for precision at model order N = 5. While the
[—types| variants displayed a slightly improved recall in some cases, the effect was not suffi-
cient to outperform the [+types] models on either of the “top-level” evaluation quantities F
or string accuracy for nontrivial model orders N > 1. This somewhat counter-intuitive effect
can only be attributed to the use of multiple boundary classes in the [+types| variants: since
the underlying CRF models allow not only the presence of a boundary but also its class to in-



fluence the conditional path probability, these models are capable of capturing distributional
regularities beyond those available to the [—types| models, which only encode boundaries’
presence or absence. Postulation of a prefix-boundary for example allows a [+types| model to
abstract over the lexical content of the prefix in question when estimating subsequent path
probabilities, whereas a [—types] model would require additional surface context in order to
identify the prefix morph as such and adjust its predictions accordingly.

5 Conclusion & Outlook

We have presented a system for the surface segmentation of morphologically complex words.
Treating segmentation as a classification task, our approach uses a Conditional Random
Field model trained on a modest set of manually annotated data to predict both the loca-
tions and the respective types of morph boundaries for each new input word. Evaluation by
cross-validation on a list of 15,522 manually annotated German word-forms showed promis-
ing results, with a model using a context window of N = 5 input characters achieving a
total precision-harmonic average F' =~ 93% on a joint boundary detection and classification
task. Somewhat surprisingly, the incorporation of multiple distinct boundary classes into the
CRF model was shown to provide a performance gain on a boundary detection task when
compared to an otherwise equivalent model encoding only boundary presence or absence.
We attribute this effect to the classification models’ greater ability to represent linguistically
salient distributional regularities.

We are interested in applying our approach to other languages and data-sets, and in
extending the approach as presented above by the optional inclusion of user-supplied lexical
data (e.g. lists of known prefixes, stems, and/or suffixes). Future work should also investigate
to what degree if any the model training phase can be augmented by semi-supervised learning
techniques [15] using a large corpus of un-annotated data.
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