International Journal of Bifurcation and Chaos, Vol. 14, No. 2 (2004) 599-621

(© World Scientific Publishing Company

LANGUAGE PROCESSING BY
DYNAMICAL SYSTEMS

PETER BEIM GRABEN*
Institute of Linguistics,
tCenter for the Dynamics of Complex Systems,
University of Potsdam, Germany
peter@ling.uni-potsdam.de

BRYAN JURISH
Berlin-Brandenburg Academy of Sciences, Berlin, Germany

DOUGLAS SADDY' and STEFAN FRISCH
Institute of Linguistics,
University of Dynamics of Complex Systems,
University of Potsdam, Germany

Received January 5, 2002; Revised September 30, 2002

We describe a part of the stimulus sentences of a German language processing ERP experiment
using a context-free grammar and represent different processing preferences by its unambiguous
partitions. The processing is modeled by deterministic pushdown automata. Using a theorem
proven by Moore, we map these automata onto discrete time dynamical systems acting at the
unit square, where the processing preferences are represented by a control parameter. The actual
states of the automata are rectangles lying in the unit square that can be interpreted as cylinder
sets in the context of symbolic dynamics theory. We show that applying a wrong processing
preference to a certain input string leads to an unwanted invariant set in the parsers dynamics.
Then, syntactic reanalysis and repair can be modeled by a switching of the control parameter
— in analogy to phase transitions observed in brain dynamics. We argue that ERP components
are indicators of these bifurcations and propose an ERP-like measure of the parsing model.

Keywords: Language processing; local ambiguity; ambiguity resolution; pushdown automata;
Godel codes; symbolic dynamics; cylinder sets; entropy.

1. Introduction

Phase transitions in the human brain are well
known in the processes of cognitive motor con-
trol [Kelso et al,, 1992; Engbert et al., 1997] and
they have been successfully modeled by nonlin-
ear field theories of cortical activation [Jirsa, 2004;
Wright et al., 2004]. In human language processing
phase transitions were observed by Racgzasek et al.

[1999] using continuously varying prosodic param-
eters for the disambiguation of speech and they
were modeled by Kawamoto [1993] for lexical am-
biguity resolution using a Hopfield net. Due to
Basar [1980], beim Graben et al. [2000b] and Frisch
et al. [2004] have considered event-related brain
potentials (ERPs) and event-related cylinder en-
tropies as order parameters of the brain indi-
cating disorder—order phase transitions when the

* Address for correspondence: Institute of Linguistics, University of Potsdam, P.O. Box 601553, 14415 Potsdam, Germany.

599

600 P. b. Graben et al.

control parameters, i.e. the experimental condi-
tions, assume critical values. In language process-
ing ERP experiments the control parameters of the
brain are given by the manipulations of the sentence
material, e.g. preferred versus dispreferred continu-
ations of local syntactic ambiguities. In German,
as in many other languages, native speakers have
been shown to prefer the grammatical function of
the subject for an ambiguous nominal constituent
rather than the object (see [Frisch et al., 2004]).
If the preferred analysis according to this so-called
subject preference strategy is disconfirmed by follow-
ing sentence material, processing problems arise and
revision (a so-called reanalysis) must be initiated
(see [Fodor & Ferreira, 1999] for an overview).
Since the manipulations in language process-
ing ERP experiments are symbolic, they were not
well suited for quantitative dynamical modeling.
Therefore most efforts in modeling language pro-
cessing have been undertaken in developing sym-
bol manipulating automata [Aho & Ullman, 1972;
Hopcroft & Ullmann, 1979]. According to this ap-
proach one considers formal languages which can
be processed by finite control machines. A for-
mal language is a subset of all strings obtained by
the concatenation of “letters”, the so-called termi-
nals from a finite alphabet. Such a subset might
be generated by a grammar, i.e. a finite produc-
tion system of “rules” describing the substitution
of strings of letters and auxiliary symbols, called
nonterminals by strings of terminals and/or non-
terminals. A context-free grammar is a production
system where each rule must describe the substitu-
tion of one single nonterminal into a string of ter-
minals and/or nonterminals. A context-free gram-
mar is called locally ambiguous if there are two or
more rules expanding the same nonterminal sym-
bol. One refers to the history of rules applied to
obtain a certain string of terminals as a deriva-
tion. A left derivation is a derivation where always
the leftmost nonterminal symbol is expanded. A
context-free grammar is called ambiguous if there
are more than one left derivations yielding the same
sequence of terminal symbols. Languages generated
by unambiguous context-free grammars can be pro-
cessed by deterministic pushdown automata. These
are devices with a finite control and with a one-
sided infinite memory tape, the so-called stack. A
simple subclass of pushdown automata are deter-
ministic top-down recognizers with only one internal
state. Languages with local ambiguities can also be

processed with deterministic pushdown automata,
however they need a look-ahead into the terminal
string to be processed. Without this look-ahead the
processing of locally ambiguous languages may lead
to garden path effects when the automaton makes
wrong predictions about the structure of a string.

In the last decades, physicists continued to
be interested in the physics of symbolic compu-
tation. In his compelling review, Bennett [1982]
describes “ballistic” and “Brownian” computers
that are computationally equivalent to Turing ma-
chines. These dynamical systems generate trajec-
tories “isomorphic with the desired computation”
from initial conditions regarded as inputs (see
also [Crutchfield, 1994]). The formal equivalence of
Turing machines and nonlinear dynamical systems
has been proven by Moore [1990, 1991b]. He demon-
strated that any symbolic system can be mapped
onto a piecewise affine linear map defined at the
unit square by interpreting the symbols as integers
from some b-adic number system.

In this paper, we use Moore’s construction to
map top-down recognizers (parsers) that recognize
context-free languages onto such dynamical sys-
tems. To capture the dynamics of nondeterministic
parsers we decompose a locally ambiguous gram-
mar into a set of unambiguous grammars that can
be processed by deterministic top-down recogniz-
ers. After representing these parsers by nonlinear
dynamical systems, we mapped their numbers onto
the values of a control parameter, thus obtain-
ing one bifurcating dynamical system at the unit
square. This control parameter reflects the parsing
strategy. Then, psycholinguistic phenomena, such
as garden path effects in the processing of ambigu-
ous structures [Frisch et al., 2004] can be roughly
modeled as a kind of phase transition in the dy-
namical system elicited by a switching of the control
parameter.

We pursue three goals by this study. Firstly, we
argue that cognitive computation is essentially tran-
sient dynamics in the sense of Bennett [1982] and
Crutchfield [1994]. That is, a problem is translated
into an initial condition of a system from which the
dynamics evolves along a transient trajectory that is
isomorphic to a running computer program. Finally,
an attractor or some given state is reached which is
considered as the solution of the problem. Secondly,
we suggest an approach that bridges the cleft be-
tween dynamical models on one hand and symbolic
computation on the other hand [van Gelder, 1998;

Marcus, 2001], namely by arguing that symbolic
dynamics provides an interface between dynami-
cal system theory and the theory of formal lan-
guages and automata. And thirdly, we make use
of these findings in order to demonstrate that cog-
nitive (symbolic) computation is essentially nonlin-
ear dynamics as follows from Moore’s proof [Moore,
1990, 1991b).

The organization of the paper is as follows.
In Sec. 2 we discuss again the language process-
ing ERP experiment of Frisch et al [2004] and
we present a toy-model of parsing by dynamical
systems. Subsequently, we provide a formal the-

ory of dynamical language processing in Sec. 3. In
|

(1) Nachdem die Kommissarin den Detektiv
after the cop the detective
[den Schmuggler],.

[the smuggler],.

Language Processing by Dynamical Systems 601

Sec. 4 we shall address some problems and open
questions by offering possible generalizations of our
approach.

2. A Toy-Model of Language
Processing

In order to illustrate our modeling approach, we
consider a part of the sentence material used by
Frisch et al. [2004] in their ERP experiment on the
processing of ambiguous pronouns. In this study,
the following two conditions — among others —
were tested:

“After the cop had met the detective, she saw the smuggler.”

(2) Nachdem die Kommissarin den Detektiv
after the cop the detective
[der Schmuggler]s.

[the smuggler]s.

getroffen hatte, sah sieg
met had saw sheg
getroffen hatte, sah sie,
met had saw she,

“After the cop had met the detective, the smuggler saw her.”

Here, we have tagged the nominal constituents of
the main clause (the second part after the comma)
of the sentences (1) and (2) by their grammati-
cal roles, where s denotes “subject” and o denotes
“object”. The sentences (1) and (2) of the ERP
experiment are therefore mapped onto the strings
so and os, respectively constituting the formal lan-
guage L = {so, os} from the alphabet {s, o}.

2.1.

Next we ask for a grammar describing the language
L. Since we are only interested in describing the
main clauses of the sentences (1) and (2), we pro-
pose the following context-free grammar G.

S—so (3)
S—os (4)

where S means “sentence” (the start-symbol of the
grammar). The rule (3) assigns subject to the pro-
noun (sie: “she”) and object to the second noun
phrase of the clause (den Schmuggler: “the smug-
gler”), while rule (4) does the opposite: the pro-
noun becomes object and the second noun phrase

Context-free grammars

becomes subject (der Schmuggler). By applying the
rules (3), (4) one obtains the context-free language
L = L(G) = {so, os}. Our toy-grammar G = {(3),
(4)} is locally ambiguous. That means that there
is more than one possibility to expand the nonter-
minal S of the grammar into a string of terminals
consisting of s or o (for a formal treatment of local
ambiguity see Sec. 3.3).

Let us look for a coarse-grained model of the
processing strategies. Psycholinguists have found
that a subject interpretation of a constituent
which is ambiguous between subject and ob-
ject is preferred and that a later disambigua-
tion towards an object interpretation is more dif-
ficult to process [Schlesewsky et al., 2000; Frisch
et al., 2002]. Due to this subject preference strat-
egy the first encountered noun phrase is inter-
preted to be the subject of a clause [Frisch et al.,
2004]. This strategy corresponds to the rule (3)
of the toy-grammar because (3) creates the se-
quence so for the matrix clause. Contrarily, the
rule (4) assigns the object role to the pronoun
which is the dispreferred interpretation. We can
thus split the locally ambiguous grammar (3),

602 P. b. Graben et al.

(4) into two unambiguous ones: the subgrammar
G1 consisting only of the rule (3) models the sub-
ject preference strategy while the subgrammar Go
which is formed by the single rule (4) produces the
string os hence modeling example (2). The sub-
grammars G and G, generate the formal languages
Ly = L(Gy) = {so} and Ly = L(G2) = {os}, re-
spectively. We show in Sec. 3.3 that any locally am-
biguous context-free grammar can be partitioned
into a finite set of locally unambiguous context-free
subgrammars.

2.2.

So far we have modeled the sentence material and
the processing preferences of the ERP experiment
that has been described by Frisch et al. [2004]. Next
we shall construct a processing model. It is well
known from computer science that context-free lan-
guages are recognized by pushdown automata [Aho
& Ullman, 1972; Hopcroft & Ullmann, 1979]. The
languages produced by our toy-grammars G and
G2 (rules (3) and (4)) can be processed by a sub-
class of pushdown automata, the so-called top-down
parsers, which are the most simple of these devices
(cf. Sec. 3.4). A top-down parser consists of two
tapes: the input tape, containing the string being
processed, and a stack memory for storing tem-
porary information. Both tapes can be described
by strings v, w where v = ~;,,..., 7Vi,_, denotes
the concatenation of k& symbols on the stack and
w = wj,..., wj denotes a sequence consisting of
[symbols in the input. While the input may only
contain terminal symbols, the stack is able to store
terminal and nonterminal symbols as well. The dou-
blet (v, w) of stack and input is called the actual
pair of the automaton.! The top-down parser only
has access to the first symbol Z = ;, on the stack
and to the first item a = w;, at the input. Depend-
ing on these “visible” symbols the parser determines
its actions at input and stack.

Let us consider the language L1 = L(G1) =
{so} for an example. A top-down parser 71 that
recognizes L1 can be described by a table of actual
pairs [Allen, 1987] that is shown in Table 1. At the
first step the parser is initialized with the start sym-
bol Z = S on the stack and the whole string w = so

Top-down parser

in the input. The device “sees” the start symbol at
the top of the stack (indicated by the bold font)
and first recognizes that it is a nonterminal of the
grammar (1. Then it looks into the list of produc-
tion rules to find a rule with the start symbol on
the left-hand side in order to predict the right-hand
side. Since (G; is unambiguous, the parser uniquely
finds the rule (3) for expanding S into so; that is
the operation given in the fourth column of Table 1.

After the first step the actual pair is (so, so),
where the visible entries are printed in bold. Now
the parser recognizes that the leading symbol on
the stack is the terminal s. In this case the parser
tries to attach the predicted symbol with the current
input. This is possible if both symbols agree. By at-
tachment the parser cancels the coincident symbols
of stack and input tape and it shifts both tapes
one step to the left thus yielding state two. Now,
the leading symbols of stack and input tape are
again corresponding terminals, so that the parser
performs a further attachment. Finally, the automa-
ton reaches its accepting state where both tapes,
stack and input are empty (or, technically speak-
ing, they contain the empty word ¢).

As for the language L1 we do the construction
of the recognizing top-down parser for the other

Table 1. Top-down parser 71 processing so
according to grammar G1. The leading sym-
bols at stack and input tape are printed in

bold fonts.
Step Stack Input Operation
0. S so predict by rule (3)
1. so e attach
2. attach
3. € € accept
Table 2. Top-down parser 71 processing os € Lo

according to grammar G1. The leading symbols at
stack and input tape are printed in bold fonts.

Step Stack Input Operation
0. S 0s predict by rule (3)
1. S0 os attachment fails
so 0s nonaccepting final state

!The term “state” has quite different meanings in computational linguistics and in dynamical system theory, respectively.
However, as will become clear subsequently, the actual pairs of a top-down parser correspond to the (macro-)states of the
assigned dynamical system. We shall therefore refer to actual pairs as “states” in the dynamical sense, unless stated otherwise

(as in Sec. 3.3).

language Lo in the same manner thus obtaining
an automaton 7. What happens if one employs a
wrong processing strategy? We shall discuss this is-
sue on the example of processing the string os € Lo
by the parser 7;. Table 2 shows this process.

The parsing process fails and ends up in a
nonaccepting state of the automaton. This can be
regarded as a very crude model of a garden path
interpretation in psycholinguistics [Fodor & Fer-
reira, 1999]. In automata theory such miss-parses
must be corrected by backtracking [Aho & Ullman,
1972] that may serve as a model of psycholinguistic
reanalysis [Fodor & Ferreira, 1999].

2.3. Godel encoding

The parsing processes described in the last sub-
section are obviously reminiscent to dynamics. The
Tables 1 and 2 provide dynamic computation in the
sense of Bennett [1982] and Crutchfield [1994]: the
problem to be solved is formulated by an initial
condition, namely an actual pair of the parser; the
computational process is a sequence of such states;
i.e. a transient trajectory and the result of the com-
putation corresponds to an attractor, either wanted
or unwanted. This raises the question whether it is
possible to translate parsing into nonlinear dynam-
ics. Indeed, it is. As mentioned above, the actual
pairs (7y,w) of the top-down parser can be consid-
ered as states belonging to some phase space. We
shall discuss in this subsection how this symbolic
space is mapped on a vector space (for a formal
proof, see Sec. 3.4).

The idea of the construction is to map the com-
mon terminals s, 0 and the nonterminal S of the two
languages L and Lo onto integer numbers. This
mapping g is called a Gddel encoding [Godel, 1931;
Hofstadter, 1979]. The way in which this is achieved
is completely arbitrary. We shall choose the follow-
ing encoding

g(0) =0
g(s) =1 (5)
g(5) =2.

From these Godel codes of the symbols we com-
pute the values of symbol strings simply by a b-
adic number expansion of proper fractions, where
we use the number of terminals and nonterminals
together, by = 3, for representing the stack and
the number of terminal symbols, by = 2, for rep-
resenting the input tape. Let us consider the first

Language Processing by Dynamical Systems 603

two rows of Table 1 as an example. Row one con-
tains the actual pair (5, so). The start symbol S
(Godel code = 2) is interpreted as the fraction
0.23 in the 3-adic number system. Hence, we ob-
tain the decimal fraction 0.23 = 2 x 371 = 0.6667,.
The decimal representation of the input tape is
0.10 =1 x 2714+ 0 x 272 = 0.519. Thus, the actual
pair (5, so) of the parser is mapped onto the dou-
blet (0.6667, 0.5) which is a point in the unit square
[0, 1] x [0, 1]. The same calculation maps the actual
pair (so, so) of the second row of Table 1 onto the
point (0.3333, 0.5). We shall refer to these b-adic
fractions also as Godel codes and we shall use the
symbols g1 and gy for the extension of the map (5)
to the contents of the stack and the input tape,
respectively.

Now we have to address one of the most essen-
tial issues of our construction. For theoretical rea-
sons (which will be thoroughly treated in the next
section) we have to interpret the actual pairs of the
parser not as points in the unit square but as rectan-
gles lying in this phase space. We therefore consider
the tapes of the parser not as being empty following
the stored contents v and w, e.g. soe at the input
tape. Instead, we allow for any arbitrary continua-
tion that is considered to be unknown, i.e.

[so] = {soo000..., soo00s..., soo0so...,...,
505Ss...} (6)

We will see in the next section that these sets of
strings all having a common building block are
nothing else than those cylinder sets, which have
been used by beim Graben et al. [2000b] and by
Frisch et al. [2004] to analyze event-related brain
potentials. Let us consider the infimum and the
supremum of these sets represented by their Godel
fractions. The Godel number of the infimum is given
by g2(s0) + g2(0) = g2(so). But the Gdédel num-
ber of the supremum is gs(s0) 4+ 272 x go(sss...).
From an expansion into a geometrical series we rec-
ognize that the value of the infinite binary fraction
g2(sss...) =0.111.. .9 is one. Hence the supremum
is obtained as g2(s0) + 272. We generalize these re-
sults to the formulas
inf(g1,2([7])) = g1:2(7) -
sup(g12([7))) = g12(7) + b,y
for any string vy of length || consisting of b1.2 sym-
bols that constitutes the cylinder set [y] (for a proof
see Sec. 3.2).
Using this representation of strings by cylinder
sets we eventually map the actual pairs (v, w) of

604 P.b. Graben et al.

the parsers onto Cartesian products of intervals

(v, w) — [0 (7), 91 (7) + b7]
x [g2(w), ga(w) + ;" (8)

which are rectangles in the unit square. For the ac-
tual pairs of the first two rows of Table 1 we there-
fore get the rectangles [0.6667, 1.0000]x [0.5000,
0.7500] and [0.3333,0.4444] x [0.5000, 0.7500].

2.4. Parsing dynamics

Using the Goddel encoding of actual pairs we are
able to map the complete parsing process onto a
trajectory of rectangles through the unit square.
Table 3 shows the trajectory for the parse presented
in Table 1.

Table 3. Trajectory of the parse of
so € Ly processed by the top-down parser
71 according to grammar G7y.

Step Rectangle
0 [0.6667, 1.0000] x [0.5000, 0.7500]
1 [0.3333, 0.4444] x [0.5000, 0.7500]
2 (0.0000, 0.3333] x [0.0000, 0.5000]
3 [0.0000, 1.0000] x [0.0000, 1.0000]

1
1 0
=]
Q
£
3
0
2
0 1 2
stack
Fig. 1. Graphical representation of the trajectory of the

parse of so € Lj processed by the top-down parser 71
according to grammar (G;. The numbers of the rectangles
correspond to the steps in Table 3.

This trajectory is graphically displayed in
Fig. 1, which suggests that there is a determinis-
tic flow defined at the unit square which drives a
rectangular set of points through the state space by
stretching or squashing it. This flow actually exists
and it can be constructed from the possible oper-
ations of the top-down parser. As we have seen in
Sec. 2.2 the parser has only access to the topmost
symbols of the stack and of the input tape. There-
fore, only the actual pairs (Z, a) completely deter-
mine the next operation of the parser. Since Z could
be a terminal or a nonterminal and since a must be
a terminal, these symbols provide a partition of the
unit square into a grid of basic rectangles by their
Godel numbers, which are displayed in Fig. 1 by the
dotted lines. At each of these dotted rectangles the
parser operates in one of the following three ways:

(9) Predict; if Z is a nonterminal symbol, ex-
pand it into a string of terminals and/or non-
terminals according to a unique rule of the
grammar; the content of the input remains
unchanged. By expanding Z into a string
Yil,--., Vig_1 it is mapped onto the sym-
bol 7;,. This entails a shift of the rectangle
along the z-axis in the Godel-representation.
Additionally, the content of the stack becomes
longer, yielding a compression of the rectangle
along the z-axis. From Fig. 1, we see that this
happens by mapping the rectangle 0 onto the
rectangle 1.

(10) Attach; if Z is a terminal symbol, compare
it with @ in the input tape. If they agree,
delete both from stack and input. That means,
the actual pair (a, a) is mapped onto the ac-
tual pair (e, €). According to the Godel en-
coding the rectangle corresponding to (a, a)
is extended and shifted along the xz- and the
y-axes such that it coincides with the unit
square. This operation was performed by map-
ping rectangle 2 onto rectangle 3 in Fig. 1. If,
on the other hand, Z does not agree with a
the parser arrives at a nonaccepting state.

(11) Accept; the parse successfully terminates when
the whole unit square [0, 1] x [0, 1] is covered
by the last rectangle. Otherwise any rectangle
corresponding to an actual pair (Z, a) where
none of these operations applies, is an invari-
ant set that is mapped onto itself.

The striking result of our construction due to
Moore’s proof is that the deterministic dynamics of

a top-down parser is a piecewise affine linear map
defined at those cells of the partition of the unit
square, which correspond to the actual pairs (Z, a)
of one symbol in the stack and one symbol in the in-
put tape, respectively. Formally, we recognize that
a parser 7, is given by the map ®, acting as

a/pv(ivj) Apv(ivj) 0 T

(12)
where [z, y;]7 is a point in the unit square,
[z411, yer1)? is its iterate, and (i,) denote the do-
mains of definition that are given by the Godel
numbers i = g(Z), j = g(a) of the topmost sym-
bols of stack and input tape providing the partition
of the unit square. The coefficients ag’(w) and az’(w)
of the parser 7, describe a parallel translation of a

state whereas the matrix elements)\Z’(Z’J) and)\5’(2’])
mediate the stretching (A > 1) or squeezing (A < 1)
of a rectangle. We present the values of these co-
efficients for the parser 71 accepting the language
L) = {so} in Table 4.

In Fig. 2 we display the domains of definition
and the coefficients of the map (12) for the parser
71. Figure 2 encodes the possible operations of the
top-down parser by colors, showing the domains of
definition of the piecewise affine linear functions in
(a) and their images in (b). Red rectangles which
are labeled by their corresponding actual pairs in
the Godel numbering represent the predict opera-
tions, where the leading symbol of the stack is ex-
panded into a string of symbols, thus entailing a
translation of the rectangle in connection with its
contraction along the z-axis. In (b) the red rect-
angles having the same labels are those images.

Table 4. Coefficients of the map (12) for the top-down

parser 71 joined to grammar Gj.

Actual Pair ax ay Az Ay
(0, 0) 0.0000 0.0000 3.0000 2.0000
0, 1) 0.0000 0.0000 1.0000 1.0000
(1, 0) 0.0000 0.0000 1.0000 1.0000
1, 1) —1.0000 —1.0000 3.0000 2.0000
(2, 0) 0.1111 0.0000 0.3333 1.0000
(2, 1) 0.1111 0.0000 0.3333 1.0000

Language Processing by Dynamical Systems 605

input

5

(=}

£ L

0
0 1 2
stack
(b)
Fig. 2. (a) Domains of definition of the parsing map (12) for

the top-down parser 71. The colors of the rectangles encode
the operation of the parser at the corresponding actual pairs.
Red: predict; the leading symbol of the stack is expanded into
a string of symbols. Blue: attach; the leading symbol of the
stack is a terminal agreeing with the leading symbol at the
input tape. The blue rectangles are extended to the whole
unit square. Yellow: do not accept; in the yellow domains the
map is the identity. (b) Images of the red rectangles from
(a). The red rectangles are the images of those red rectangles
from (a) labeled by the same actual pair (i, 7).

606 P. b. Graben et al.

input

=]
g |
0
0 1 2
stack
(b)
Fig. 3. (a) Domains of definition of the parsing map (12)

for the top-down parser 9. (b) Images of the red rectangles
from (a). For the color scheme, see Fig. 2.

Blue rectangles in (a) represent the attach opera-
tion. Their images are the whole unit square. Yellow
rectangles in (a) represent actual pairs where nei-
ther predict nor attach nor accept can be applied.
So far we have discussed the dynamics of the
parser 7| processing the string so according to

the subject preference strategy. Additionally, we
present also the map of the parser 7o that processes
the string os with respect to the grammar Gs in
Fig. 3. Obviously, as Figs. 2 and 3 reveal, the do-
mains of definition are the same for all parsers
maps. Only the images of the red rectangles
differ due to the different grammars which are
used to expand the nonterminal symbols on the
stack.

After performing this construction of a discrete
time deterministic dynamical system for the two
top-down parsers 71 and 7o, any string of the lan-
guage L = {so, os} can be processed by each of
these dynamical systems. To achieve this, the string
must be translated into an interval at the y-axis
by the bs-adic Goédel encoding go. Moreover, one
has to compute the image of the start symbol S
that initializes the stack of the parsers under the
Godel encoding g1. Thus we obtain a rectangle Ry
in the unit square as the image of the first actual
pair. To carry out a simulation, we prepare an en-
semble of points x}) = [z}, yi]T, i = 1,2,..., M,
randomly chosen in Ry as initial conditions of the
dynamics. From each of these points the first iter-
ate xi = ®,(x{) of the map (12) is computed. The
envelope of this set yields the rectangle Rq in the
unit square corresponding to the second actual pair
of the parse. By performing the iteration procedure
recursively: xi = ®,(x!_;), we obtain an ensemble
of M trajectories {xi[t € No,i =1,2,..., M} ex-
ploring the phase space of the parsing dynamics.
The envelopes of the sets of all states at the tra-
jectories at each time t provide a sequence of rect-
angles R; that are equivalent to the actual pairs of
the parser 7, due to the Godel encoding. In this
sense we have constructed a dynamical toy-model
of language processing.

2.5. Diagnosis and repair

In Sec. 2.2 we have seen that processing the string os
according to the “wrong” grammar G leads to the
nonaccepting final state (so, os). This actual pair
is situated within the yellow rectangle (1, 0) in the
unit square (see Fig. 3) where all parsing maps are
evidently given by the identity. The rectangle corre-
sponding to this actual pair is therefore an invariant
set of the map (12). Hence, we recognize that both
the top-down parser 7 and its associated map @,
lead to a garden path interpretation by processing
os. In automata theory, such a dead-end can only

=]
o
£
0
0 2
1
=]
o
£ |
0
1 2
stack
(b)
Fig. 4. (a) Domains of definition of the repair map for the

control parameter r = 1/2. (b) Images of the red rectangles
from (a). For the color scheme, see Fig. 2.

be left by backtracking [Aho & Ullman, 1972]. We
shall demonstrate in this section that our dynami-
cal system model of language processing allows to
establish a dynamics managing reanalysis without
any backtracking.

Language Processing by Dynamical Systems 607

Up to now, we have considered the two maps
®; and P, constructed from the parsers 7 and 7
as being distinct dynamical systems. However, from
the physical point of view it is much more natu-
ral to consider them as only one dynamical system
depending on an additional control parameter, be-
cause all these maps are living at the same state
space that is partitioned in the same way. For the
sake of convenience we will normalize the possible
values of the control parameter r to the unit interval
[0, 1]. We take the predecessor of the parser’s num-
ber p as the control parameter, r = p— 1. Thus, the
maps ®, become parameterized as ®,.

What happens when the wrong parsing strat-
egy r =0 (p = 1) is used for processing the string
os that must be correctly parsed by the strategy
r=1(p=2)7 As we know, the dynamics reaches
an unwanted invariant set represented by the ac-
tual pair of Godel numbers (1, 0). Assuming that
the map @ is iteratively invoked by some “cogni-
tive control unit” (regarded as a “homunculus”),
this higher level system eventually recognizes the
nonacceptable attractor (1, 0) in the parser’s phase
space. We may call this recognition process diagno-
sis [Fodor & Ferreira, 1999]. After diagnosing the
garden path analysis the control unit will turn the
control parameter of the parsing dynamics towards
the right choice » = 1. However, this will not help
at all because we know that the state (1, 0) is an
invariant set for every value of the control param-
eter. The solution is to introduce an intermediary
dynamical system to repair the failed parse. We as-
sign this repair dynamics to the control parameter
r = 1/2. Figure 4 presents the domains of definition
and the images of this map.

The map @5 is constant for almost every cell
of the partition but not at (1, 0). Having this in-
termediary map available, the control unit changes
the control parameter from r = 0 to r = 1/2 for
one iteration. This causes the dynamics to leave the
invariant set after the next iteration. The system
does not trace the trajectory in the past, as would
be necessary for backtracking. Finally, the control
unit processes further with » = 1. Figure 5 shows
the complete parse with garden path interpretation
(r = 0), diagnosis and repair (r = 0 — r = 1/2),
and completion (r = 1).

In dynamical system theory, changing control
parameters beyond critical values causes qualita-
tive changes in the structure of the flow at the
state space, i.e. bifurcations. Thus, we see that
our language processing dynamics can be modeled

608 P. b. Graben et al.

in analogy to a bifurcating dynamical system when
garden path interpretations are diagnosed and
repaired.?

2.6. Parsing entropy

In the language processing experiment that moti-
vates our dynamical system modeling, Frisch et al.
[2004] observed a P600 ERP component elicited
by the revision of the subject preference strategy.
The authors also presented an alternative analy-
sis of ERP by means of symbolic dynamics where
ERP components are usually reflected by decreases
of the cylinder entropy, thus indicating disorder—
order phase transitions of the brain dynamics [beim
Graben et al., 2000b]. In this subsection we shall
present a way to measure the entropy of the parsing
states of our model which is justified by the equiva-
lence — shown in the next section — of the actual

1
3
5
a
£
4
2 1 0
0
0 1 2
stack
Fig. 5. Graphical representation of the diagnosis and repair

trajectories. Reanalysis of the parse of os € Lo processed by
the dynamics @y according to grammar Gi: steps 0 and 1;
the state 1 corresponds to the unwanted garden path. This
is recognized by the control unit which subsequently turns
the control parameter to r = 1/2 (diagnosis). Step 2 yields
the repaired state. Then the control unit changes the control
parameter to r = 1 to complete the parse according to the
right grammar Ga: steps 2—4.

pairs of a parser with cylinder sets of a symbolic
dynamics.

Entropy is a measure of uncertainty based
on probability distributions. Shannon and Weaver
[1949] defined the entropy of a discrete distribution

{(&, pi)li=1,..., n} by
H= —Zpi log p; - (13)
i=1

In dynamical system theory the probability p; for
occupying the ith cell B; of a partition of the phase
space can be estimated by the relative dwelling
time of typical trajectories in B; [Ott, 1993]. We
shall use a similar argument utilizing the relative
area of a rectangle in the unit square with re-
spect to a measurement partition. To be precise, we
define

area (RN B;)

area (R)

where the geometrical function area (R) =
(g — 1) - (y2 — wy1) determines the area
of the rectangle R = [x1, x2] X [y1, y2).

By applying Eqgs. (13) and (14) to the trajecto-
ries of rectangles of our parsing dynamics using an
appropriately chosen measurement partition that is

pi(R) = (14)

input

0 1 2
stack

Fig. 6. Measurement partition of the unit square for deter-
mining parsing entropies.

2Similarly, Kawamoto [1993] has modeled the access to an alternative meaning of a lexically ambiguous word by the habituation
of synaptic weights in a Hopfield neural network entailing a bifurcation of the network’s energy landscape.

iteration

Fig. 7. Time coarse of parsing entropies due to the subject
preference strategy from the dynamical systems according to
the measurement partition shown in Fig. 6. The colors cor-
respond to the ERP components and event-related entropies
presented in [Frisch et al., 2004]. Blue denotes the string so,
green os where the revision of the subject preference strategy
evokes a P600 ERP (the trajectory is shown in Fig. 5).

shown in Fig. 6, we obtain the time course of the
parsing entropies presented in Fig. 7.

For a better visualization, Fig. 6 displays the
mesh density of the measurement partition in a log-
arithmic scale. From Egs. (13) and (14) one easily
recognize that the probability p; = 1 when the rect-
angle R representing the parsers state is completely
covered by one cell B; of the measurement partition.
This is either the case when R is too small or the
grid of the partition is too coarse, such that R drops
through the grid, leading to zero entropy. This al-
most happens by construction of the measurement
partition at the domain (0, 1) where the garden
path interpretation of our dynamical model is sit-
uated. On the other hand, when R is completely
covered by N cells B; of equal size, the overlap be-
tween one of these cells and R becomes area (R)/N,
entailing p; = 1/N and thus maximal entropy.

As Fig. 7 reveals, the measurement partition
was constructed in such a way that the detection
of the garden path analysis in processing the string
according to the inappropriate strategy leads to a
decrease in parsing entropy as is the case in proper
language processing [Frisch et al., 2004]. Therefore
our toy-model of language processing may offer a
possible interface between dynamical and computa-
tional modeling on the one hand and psycholinguis-

Language Processing by Dynamical Systems 609

tic experiments and nonlinear data analysis on the
other hand.

3. Theory of Language Processing
by Dynamical Systems

This section is devoted to a formal theory of dy-
namical language processing that has already been
outlined by beim Graben et al. [2000a]. After men-
tioning some basic concepts of dynamical system
theory and symbolic dynamics, we will quote the
fundamental theorem of Moore [1990, 1991b] on
mapping Turing machines onto dynamical systems
at the unit square. Then we shall apply Moore’s
proof to construct dynamical systems from push-
down automata. First, we recall the concepts of
discrete time dynamical systems in one and more
dimensions.

3.1. Symbolic dynamics of
one-dimensional systems

A discrete time deterministic dynamical system is a
pair (X, ®,), where X is the phase space while the
flow? ®, : X — X is an invertible map assigning
to a state x; at a certain time ¢ its successor x4
at time t 4+ 1, occasionally depending on a control
parameter 7. A given state x4, at a certain time
to is called initial condition of the dynamics. The
set of states {z;|x; = ®L(zy,),t € Z} generated by
the flow from the initial condition z¢, is called a
trajectory of the dynamical system. The powers of
the map ®L are recursively defined by iterating the
map: ®L = . 0 7L,

A special class of dynamical systems is provided
by the unit interval [0, 1] as their phase space and
by a nonlinear function ®, mapping the unit in-
terval on itself. These systems are known as one-
dimensional dynamical systems [Collet & Eckmann,
1980]. The most simple one-dimensional dynamics
are defined by piecewise (affine) linear maps at the
unit interval. In the following, we shall consider
the Bernoulli map [Schuster, 1989] as an intrigu-
ing example that shares many common properties
with our parsing models discussed in Sec. 2.4. The
Bernoulli map is defined by ®(z) = 2z mod 1,
i.e. the map is obtained by the linear function
y = fo(z) = 2z at the subinterval [0,0.5] and by
the affine linear function y = f1(z) = 2z — 1 at the
subinterval]0.5,1]. Though being piecewise linear,

3For discrete time systems the flow is sometimes called cascade [Anosov & Arnol’d, 1988].

610 P. b. Graben et al.

the map is nonlinear at the whole phase space [0, 1]
and exhibits the typical stretching and folding prop-
erties of chaotic dynamical systems. The Bernoulli
map does not depend on a control parameter.

A binary expansion of the states of the
Bernoulli map provides insight into its dynamics:
for any number in the unit interval a representation
by a proper binary fraction exists. Numbers smaller
than 0.5 start with their most significant digit “0”
while numbers greater than 0.5 begin with the bi-
nary digit “1”. Let us consider the initial condition
xo = 0.1101 for an example. Its decimal expansion
is given by

[e.e]
T = E a; - 27"
i=1

=1x2'+1x224+0x23+1x27
=0.8125, (15)

where a; are the binary digits vanishing for non-
periodic fractions at some i. What are the succes-
sors of zg lying at a trajectory of the Bernoulli
system? In the decimal number system, we obtain
rp = (I)(l‘o) = 0.6250, T = (I)(l‘l) = @2(33‘0) =
0.2500, x5 = ®(x3) = ®3(zg) = 0.500, 4 =
®(x3) = ®*(xg) = 0.0. However, using the binary
number system yields the trajectory x1 = ®(z¢) =
0.101, o = (I)(l‘l) = 0.01, r3 = (I)(.rg) = 0.1,
x4 = ®(z3) = 0.0. One easily recognizes that the
Bernoulli map acts on the binary numbers as a shift
to the left discarding the 2° position.

The binary descriptions, e.g. “1101”, of the
states x together with the representation of the map
® given by the left shift o is called the symbolic dy-
namics of the Bernoulli map [Schuster, 1989]. Here,
the binary digits “0”, “1” are regarded as symbols
from a finite alphabet A. States of the dynamical
system are mapped onto sequences s = a;, G, @j - - -
of symbols stemming from A. Sequences of finite
length are called words. The set of all sequences
of (one-sided) infinite length s = a; a;,a;, ... as-
sumes the notation AN. As mentioned above, the
most significant digit a;, of a binary fraction de-
cides whether the state is taken from the lower or
from the upper half interval: a;, = “0” means x(€
[0, 0.5] whereas a;, = “1” means xg €]0.5, 1]. Hence,
the most significant digit a;, partitions the system’s
phase space into disjunct subsets. The symbols “0”
and “1” are assigned to the cells Ayp = [0, 0.5] and
Ay =]0.5, 1] respectively, where the indices of the
subsets of the partition are taken as symbols of the
alphabet. In the same manner, the first two sym-

bols a;,a;, of a sequence decide where the initial
condition zy and its first iterate x; = ®(z) are sit-
uated. In the example discussed above, “11” means:
rg € Aq and also 1 € A;. The latter expression is
equivalent to ®(zg) € A; and can be reformulated
to zg € ®1(A;) where ®~! denotes the preimage
of a set. It is always defined even if the map itself is
not invertible such as the Bernoulli map. By gener-
alizing this expression, we obtain

o0
5= Q4 QiyQjy ... = T € m @_k(AikH) . (16)
k=0
When we apply this construction to the Bernoulli
map we find that the first two symbols describe
a partition of the unit interval into quarters: “00”
means [0, 0.25], “01” means |0.25, 0.5], and so on.
In general, by fixing the first n binary digits of a
sequence s = a;,G;,0;, ... we refer to the interval
[0.a; ...a;,00000..., 0.a;, ...a;,11111...]. These
sets of symbol strings beginning with a fixed pre-
fix have been introduced in Eq. (6) to define cylin-
der sets. A cylinder of length n is therefore a set of
all sequences coinciding in the first n letters of the
alphabet.

3.2. Symbolic dynamics of
high-dimensional systems

Next, we shall introduce symbolic dynamics of
general time discrete dynamical systems depend-
ing on some control parameters » € R?; the phase
spaces of which are subsets in some R™. A coarse-
grained description of the dynamics is gained by a
partition covering the phase space of the dynamical
system [Beck & Schlogl, 1993; Badii & Politi, 1997].
Let {A;]i = 1,2,..., I} be a family of I pairwise
disjunct subsets covering the whole phase space X,
ie. UZ.Izl A;=X; AinAj =10, i%# j. The index set
A ={1,2,..., I} of the partition is interpreted as
a (finite) alphabet of letters a; = i. In the case of
an invertible deterministic dynamics we are able to
determine the system’s past as well as its future by
iterating the inverse flow ®, 1 and the flow ®,, re-
spectively. By deciding which cell A; of the partition

is visited by a state x; at timet=...—1,0, 1,...
we assign a symbol ..., a; ,, aiy, a;,,... at each
instance of time. Thus, we obtain a bi-infinite se-
quence of letters s = ...a; ,a;,ai,a;, ... from A.

The expression A% refers to the set of all these bi-
infinite strings of symbols. Given a time discrete
and invertible deterministic dynamics ®, we con-
struct a map m : X — A? that assigns initial

conditions zg € X to bi-infinite symbol strings
s € A% by the rule 7(zo) = s, iff x;, = ®L(xg) €
A;,, t € Z. Thus, m maps initial conditions zq in
the state space onto symbolic strings regarded as
coarse-grained trajectories starting at zg. By do-
ing so, the flow ®, is mapped onto the left shift
o, as in the case of the Bernoulli map. The shift
is hence a map o : AZ? — A% acting according
o(...a; G005 ...) = ...0;_,Qiy0;, iy ... Where
the hat denotes the current state under observa-
tion. The map m mediates between the quantitative
states x € X C R™ and the states of the symbolic
dynamics s € AZ by

(D (1)) = o(m(2)).- (17)

The map 7 might not be invertible. If 7 is invertible
the partition is called generating and every string of
symbols corresponds to exactly one initial condition
generating it [Beck & Schlogl, 1993].

Nevertheless, if 7 is not invertible, we can apply
the map 7~ ! at subsets of AZ namely at strings of
finite length, looking for their preimages in X. In
order to do this we generalize the notion of cylinder
sets. Let t € Z, n € N and a;,, ..., a;, € A. The set

[a’i17 s az‘n]t = {S € AZ|3t+k—l = Qjy,
k=1,...,n} (18)

is called n-cylinder at time t. For further references
see [Badii & Politi, 1997; Beck & Schlogl, 1993;
beim Graben et al., 2000b]. Since cylinders are sub-
sets of A% of infinite strings coinciding in a sequence
of time points {t,t + 1,...,t + n — 1}, we can
determine their preimages under the deterministic
dynamics &,

n—1

m Mlai, s ai)) = [2 F(Ai,,) . (19)
k=0

This is almost the same formula as Eq. (16).

As for the Bernoulli map any general symbolic
dynamics can be mapped back onto a quantitative
dynamical system by performing a b-adic expan-
sion. To archive this the symbols of the alphabet
A must be encoded by integers. If I is the cardinal-
ity of the alphabet we need I digits 0, 1, 2,..., I—1
representing the letters aq, ao, as,...,ar. We know
the assignment g(a;) = i — 1 as a Gddel encod-
ing from Sec. 2.3. Given a finite or bi-infinite sym-
bolic sequence s = ... a; ,a;,a;, G, . . . Where the hat
denotes the current state again, we expand the left-
half sequence s_ = ...a; ;a; ,a; ,a;, into the I-
adic fraction x = ... + g(a;_) I~* + g(a;_,) I3 +

Language Processing by Dynamical Systems 611

g(a;_)T~ + g(a;,)I~" and the right-half sequence
54 = Q,Giy0i, ... into the [-adic fraction y =
glai) It +g(ai,) T2+ g(ai,) I3 The sequence
s is thus mapped onto a pair (x, y)

r=Y gl)7 (20)
k=0

y=7) glag)I™" (21)
k=1

of real numbers lying in the unit square [0, 1]x [0, 1].

Furthermore, as cylinder sets of the Bernoulli
map were represented by subintervals of the unit
interval, we shall demonstrate that cylinder sets of
an arbitrary symbolic dynamics [Eq. (18)] are rect-
angles in the unit square. To this aim let us con-
sider a cylinder of length n + [4+ 1 at time —I:
[@iys s @iy = {s € A%ls) = aiy, s 141 =
Qjgy vy SO = Q4 g5 S1 = = ain+l+1}.
We split the elements of this set into two half-
sequences: S_ = ...S_;S_j+1...80 and sy =
$182...8p.... According to our discussion in
Sec. 2.3 we therefore obtain an interval of real num-
bers for the expansion of s_ and s, respectively.
The infimum of the interval constituted by the ex-
pansions of s_ is

ail+2,..., Sn

-1
x = Zg(si)li_l . (22)
i=0
For the supremum of this interval we find

[ee]
zy=xi+ Y (I-DI =z 4+ (23)
i=1+2

where we have made use of the limit of geometric
series thus proving Eq. (7). Accordingly, we obtain
the interval [y1, y1 + I7"] with y1 = >0, g(s;) "
for the right-half sequence s;. Hence, the cylinder
set [a,...,a;,,,,,]-1 is represented by the rectan-
gle [x1, xa] X [y1, y2] [cf. Eq. (8)].

3.3. Local ambiguity of context-free
grammars

In this section, we wish to investigate the properties
of locally ambiguous grammars as informally pre-
sented in Sec. 2.1 in terms of some standard notions
from the theory of formal languages. In particu-
lar, we are interested in constructing a determin-
istic top-down recognizer from an arbitrary locally
unambiguous grammar, as described in Sec. 2.2.

612 P. b. Graben et al.

We will then go on to show that any context-free
grammar may be partitioned into a finite set of lo-
cally unambiguous types of grammar, as suggested
in Sec. 2.1. We begin by presenting some basic con-
cepts from the theory of formal languages.

A context-free grammar G is defined as a
4-tuple, G = (N, T, P, S), where

(24) N is a finite set of n nonterminal symbols,
(25) T is a finite set of m terminal symbols such

that NNT = 0,
(26) P C N — (NUT)* is a finite set of production
rules,* and

(27) S € N is the distinguished start symbol.

Below, unless otherwise specified, we will assume
we are dealing with a context-free grammar G =
(N, T, P, S).

A pushdown automaton (or “PDA”) is a 7-tuple
M=(Q,T,T,96, q, Zy, F), where

Q is a finite set of states,

T is a finite input alphabet,

I' is a finite stack alphabet,

6: Q x (T'U{e}) x I' — 2@T") ig a partial
transition function,

(32) qo € @ is the distinguished initial state,

(33) Zp €T is the initial stack symbol, and

(34) F C (@ is the set of final states.

In this paper, we are concerned with pushdown au-
tomata with no final states: F' = (). Such automata
are said to accept by empty stack. The operation
of such automata is described in more detail in
Sec. 3.4. Given a context-free grammar G, we can
construct a pushdown automaton which accepts the
language generated by G by simulating rule expan-
sions. Such an automaton is called a top-down rec-
ognizer. Formally, if G = (N, T, P, S) is a context-
free grammar, then the pushdown automaton M =
({q}, T, (NUT), 6, q, S, 0) is a top-down recognizer
for G, where § is defined as follows for all A € N
and all a € T

0(q, e, A) ={(¢, @)|]A — o € P} (“c move”)

(35)
(g, a, a) = {(q, €)}

See [Hopcroft & Ullman, 1969; Aho & Ullman, 1972]
for a more complete discussion.

(“non-¢ move”). (36)

Our concern in this paper is with determinis-
tic pushdown automata. Informally, a deterministic
automaton is simply one whose transition function
allows at most one move for each possible config-
uration.’” Formally, a PDA M as above is said to
be deterministic (a “DPDA”) if for each ¢ € Q
and each Z € T, either (37) or (38) holds for all
acT:

6(g; e, Z)=0 and (g, a, 2)

contains at most one element , (37)

d(q,a, Z)y=0 and 6(q, ¢, Z)

contains at most one element. (38)

When dealing with deterministic PDAs, the transi-
tion function may be redefined: 0: @ x (T'U {e}) x
I'—QxI™.

We now turn our attention to locally ambigu-
ous grammars as informally presented in Sec. 2.1.
Formally, we say for a context-free grammar G =
(N, T, P, S) and a nonterminal symbol A € N, that
G is locally ambiguous with respect to A if and only
if there exist productions A — 8, A — v € P such
that G # v. We say that G is locally ambiguous just
in case there is some nonterminal symbol A € N
such that G is locally ambiguous with respect to A.
G is said to be locally unambiguous just in case G
is not locally ambiguous.

It should be noted that our definition of “local
ambiguity” differs from other notions of ambigu-
ity to be found elsewhere in the literature. When
considered in terms of top-down recognizers how-
ever, our notion can be seen to resemble the con-
cept of local ambiguity for LR parsers with graph-
structured stacks described by Tomita [1987]. Tra-
ditionally though, “ambiguity” is defined globally
for a grammar as that property which holds when
some sentence of the grammar has more than one
left derivation with respect to that grammar (see
Sec. 1). Clearly, a grammar can only be ambigu-
ous in the traditional sense if it is also locally am-
biguous. The reverse does not hold, since there are
globally unambiguous grammars which are indeed
locally ambiguous, such as our toy-grammar from
Sec. 2.

Given our notion of local ambiguity, it is easy
to see that every locally unambiguous grammar
G = (N, T, P,S) has a deterministic top-down

“Here and elsewhere in this section, we use the Kleene star to indicate the reflexive and transitive closure of the alphabetic
concatenation operation; thus V* is the set of all strings over the alphabet V, including the empty string «.
A configuration for a pushdown automaton is a triple (¢, w,a) € Q x T x T'*.

recognizer M = ({¢}, T, (NUT), 4, q, S,). Only
Eq. (35) in the construction given above is capable
of introducing nondeterminism into M. For a locally
unambiguous grammar G, there is at most one rule
expanding each nonterminal symbol A € N, so that
0(q, €, A) has at most one element, and M is there-
fore deterministic.

Having shown that all locally unambiguous
grammars have deterministic top-down recogniz-
ers, we now present a method by which an arbi-
trary context-free grammar may be broken down
into a finite set of locally unambiguous grammars.
Let G = (N, T, P, S) be a context-free gram-
mar. We call a finite set of context-free grammars
G = {Gi,..., Gp} a partitioning of G just in case
P=_,Pand G;=(N,T, P, S), for 1 <i<p.
If G is a partitioning of some context-free gram-
mar G, we call G a partitioned context-free gram-
mar, and say that G is the synthesis grammar of
G. We wish to use local ambiguity as a criterion on
which to base grammar partitionings. For this pur-
pose, we first define a local disambiguation function
LocDis, which produces for a context-free grammar
G = (N, T, P, S) and a nonterminal symbol A € N
unique partitioning G of G such that each element
of G is locally unambiguous with respect to A. Let
Py={A — a|A — a € P} and let Py = P — P4y,
then

LocDis(A4, G)

{G} if Py=10
- g: {(N, T, PU{r}, S)} otherwise.
(39)

To see that the elements of LocDis(4, G) are
locally unambiguous with respect to A, we must
consider several cases. If G is not locally ambigu-
ous with respect to A, then either P contains no
expansions for A, in which case P4 = 0, or P
contains exactly one rule A — « expanding A,
in which case P4 = {A — a}; in both of these
cases, LocDis(A, G) = {G}. Otherwise, G is lo-
cally ambiguous with respect to A, so there are
rules A — aq,..., A — oy € P, and Py = {A —
ai,..., A— a4} Since Py is nonempty, each G’ €
LocDis(A, GG) contains exactly one rule from Py,
and is therefore locally unambiguous with respect
to A.

We can extend the function LocDis to handle
a partitioned context-free grammar G as its second

Language Processing by Dynamical Systems 613

argument in the obvious manner:

LocDis(A, G) = U LocDis(4, G').
G'eg

(40)

By iteratively applying the extended local disam-
biguation function LocDis, it is possible to par-
tition an arbitrary context-free grammar G =
(N, T, P, S) into a finite set G of context-free gram-
mars such that each G’ € G is locally unambigu-
ous. We say in this case that G is a locally unam-
biguous partitioning of G. Let {Aq,..., A} = N
be an enumeration of the nonterminal symbols of
the grammar G, and construct the partitioning G,

of G:
Go ={G}
Git1 = LocDis(A;t1, Gi) .

As shown above, each iteration in the construc-
tion of G, removes the local ambiguities with
respect to a single nonterminal symbol from
the partitioned grammar produced by the pre-
ceding iteration. Further, no new local ambi-
guities are introduced by any application of
LocDis, since LocDis is monotonic in the sense
that it can only remove rules from an argu-
ment grammar. Since G has exactly n nonter-
minals, every element of G, must be locally
unambiguous.

We have shown that every context-free gram-
mar can be partitioned into a finite set of locally
unambiguous grammars, and that each element of
this set is associated with a deterministic top-down
recognizer. Although we will concern ourselves in
the rest of this paper with modeling the recog-
nizers associated with locally unambiguous gram-
mars, the use of a control parameter as described
in Sec. 2.5 should allow the extension of our model-
ing strategy to the recognition of arbitrary context-
free languages by means of the locally unambiguous
partitionings of the respective grammars.

3.4. Symbolic dynamics of
automata

In order to describe Turing machines as dynam-
ical systems, Moore [1990, 1991b] introduced the
concept of genmeralized shifts. Like the shifts dis-
cussed in Sec. 3.2 the generalized shifts are maps
defined on the set of bi-infinite symbolic strings
A% Let s = ...a;_,d;,a;,a;, - .. be such a sequence
where the hat denotes the current state. In Moore’s

614 P. b. Graben et al.

construction the hat indicates the tape position of
the head of a Turing machine. A generalized shift is
characterized by a range of d symbols called domain
of dependence. The generalized shift acts on this
word w of length d by first replacing it by a further
word w’ of length d’ and then by performing a shift
k symbols to the left or to the right [Moore, 1990,
1991b; Badii & Politi, 1997]. Moore has proven that
these systems are computationally equivalent to any
Turing machine.

The b-adic expansion algorithm of symbolic se-
quences into points of the unit square [Egs. (20)
and (21)] can be applied to states of the generalized
shift in quite the same manner. It is therefore possi-
ble to map any Turing machine onto a time discrete
nonlinear dynamics living at the unit square. The
corresponding map has been shown to be piecewise
affine linear just as the Bernoulli map discussed in
Sec. 3.1 [Moore, 1990, 1991b].

In this section we shall justify our construc-
tion of dynamical systems from top-down parsers
for the processing of context-free languages sup-
plied in Sec. 2.4. Because formal languages accepted
by pushdown automata belong to a lower class in
the Chomsky hierarchy than recursively enumerable
languages accepted by Turing machines [Hopcroft &
Ullmann, 1979; Badii & Politi, 1997], any pushdown
automaton can be simulated by a Turing machine.
Hence, Moore’s proof holds for pushdown automata
t00.5

Here, we shall assume G to be locally un-
ambiguous, belonging, e.g. to a locally unambigu-
ous partitioning of some locally ambiguous gram-
mar which can be constructed by the algorithm
described in Sec. 3.3. Then, as we have also demon-
strated in Sec. 3.3, the language £(G) can be pro-
cessed by a deterministic top-down recognizer M =
({q}, T, T, 6, q, S,) with ' = NUT. The state de-
scriptions of this automaton are provided by the ac-
tual pairs (v, w) € I'" xT™ where v = viy Vi, - - Vi,
is the content of the parser’s stack while w =
wj, Wy, - . - wj, is some finite word at the input tape.
From the definition of the transition function § fol-
lows that the automaton has access only to the top
of the stack 7;, and to the first symbol of the input
tape wj, at each instance of time. Thus, we define
amap 7: I' x T — I'* x T™ acting on actual pairs of
the topmost symbols of stack Z € I" and input tape
a € T, respectively, by the transition function ¢

T(Z,a)= (v, a): (g, €, Z)=(q,7),
for € moves
(41)
7(a, a) = (e, €): d(q, a, a) = (g, €),
for non-& moves,
where v = v, ...7i,_, if Z € N and if P contains a
rule Z — ~. We see that the e-moves correspond
to the predict operations while the non-¢ moves
correspond to the attach operations described in
Sec. 2.2.

In the following we establish the relation be-
tween deterministic top-down parsers and piece-
wise affine linear maps at the unit square that
has already been used in Sec. 2.4 for the construc-
tion of our toy-model of language processing. For
this aim we shall first reorder the content of the

stack: 'yg_k = 7i,, obtaining the reversed sequence

T ’y{_k+1...7§717§0. Next, we concatenate the

transformed stack with the input tape yielding a
two-sided (but finite) string

§ = %{,Hl e ’Yz(_l%(owjlwh o Wy (42)
Then, we could apply the b-adic expansion on the
left- and right-half sequences s_ and s after intro-
ducing a Godel encoding of the set ' = N UT in
order to map the actual pair to a point in the unit
square. But this is not what we will do. To avoid
gaps in the unit square we decided to use two dif-
ferent encodings: one, g1, of the set I' for the stack
and another, go, of the terminals T for the input
tape. Thus, we perform a by = (n + m)-adic expan-
sion of the stack and a by = m-adic expansion for
the input tape. This yields a partition of the unit
square into rectangles of equal size (n—l—m)_l xm ™!
according to Egs. (20) and (21). The two b-adic ex-
pansions lead to a point (x, y) in the unit square
with coordinates

k—1
z=> gi(_,)m+n)"" (43)
h=0
l
y=>Y_ga(wj,)m™". (44)
h=1

By this construction the most significant digits
i, and wj, determine the rectangle where the
point (z, y) will be found. We obtained therefore
a coarse-grained description of the actual pairs
represented by states of a quantitative dynamical
system.

6Moore has also proven that pushdown automata are equivalent to nondeterministic one-sided generalized shifts [Moore, 1991a,
1991b]. However we do not pursue this approach here since we are interested in deterministic dynamical systems.

To proceed further, we need some considera-
tion of the empty word . In formal language theory
the set A* of all strings of words of finite length
formed by letters of the alphabet A constitutes a
semi-group with respect to the concatenation “.” of
words: u- (v-w) = (u-v)-w for all u, v, w € A* and
w-€=c¢-w = w. The empty word ¢ is the neutral
element of this semi-group. In order to complete our
construction we have to determine the image of ¢
in the unit interval when we consider one-sided se-
quences s € AN, This can be done by using Eq. (19)
which states the relation between cylinder sets of
length n and their preimages in the phase space of a
dynamical system. Decomposing the left-hand side
of Eq. (19) into concatenation and the right-hand
side into intersection factors leads to

W_l([(aiu ER) aim) : (aim+1’ tt ain)]l)

m—1 n—1
= <m q)_k(AikH)) N <m (I)_k(AikH))
k=0 k=m
(45)

or in shorthand notation 7 (u -v) = 7 1(u) N
7 1(v) for words u, v regarded as cylinder sets.
Hence, 7! is a semi-group homomorphism map-
ping the concatenation of words onto the intersec-
tion of sets. It is well known from set theory that the
neutral element with respect to set intersection is
the base set. In our case, this is just the unit interval
[0,1] which has therefore to be identified with the
empty word. Correspondingly, the goal of the top-
down parser, the actual pair (e, €) is represented
by the whole unit square [0, 1]%. A further conse-
quence of this reasoning is that the content of the
stack as well as the content of the input tape might
be considered as one-sided infinite strings that are
committed to finite words at the very beginning as
we have argued in Sec. 2.4. Due to this interpre-
tation we allow uncertainty about forthcoming and
already processed input, respectively. Now, we are
able to extend the symbol sequence from Eq. (42)
towards plus and minus infinity:

s = ...%{_Hl...fygflfygowjlwh...wjl.... (46)
The actual pair (v, w) of the parser comes out to
be the set of all bi-infinite sequences s coinciding
in the symbols 'yé_kﬂ Y|V, at the left-half side
and coinciding in the symbols w; wj, ... w;, at the
right-half side, that is — a cylinder set. Using the b-
adic expansions [Eqs. (43) and (44)] of the parser’s
state, any actual pair is mapped onto a rectangle in
the unit square.

Language Processing by Dynamical Systems 615

Our remaining job is to establish the parsers dy-
namics by a generalized shift and finally by a piece-
wise affine linear map at the unit square. This is
achieved by the definition of the map 7 introduced
by Eq. (41). Since 7 acts only on actual pairs of sym-
bols (Z, a) and not of strings, the Godel numbers
of these symbols provide the domains of definition
in Moore’s construction with d = 2. Considering Z
and a as the most significant digits of the b-adic
representations of stack and input tape, they de-
fine a partition of the unit square into basic rectan-
gles with labels i = ¢1(Z), j = g2(a). We therefore
construct a map ® : [0, 1]2 — [0, 1]> which is
affine linear at these rectangles (i, j) thus yielding
Eq. (12).

4. Discussion

We have presented a formal approach for mod-
eling language processing by nonlinear dynamical
systems. This has been illustrated by a toy-model
of the psycholinguistic experiment using event-
related brain potentials and event-related cylinder
entropies reported by Frisch et al. [2004]. In this ex-
periment, it was tested how the syntactic ambiguity
of a pronoun in German is resolved in the course
of sentence processing. For a proper discussion, see
Frisch et al. [2004]. The construction of our model
comprises eight steps: (1) describing the stimulus
material of the experiment by a rather crude for-
mal language, hereby using the grammatical roles
(subject and object) of noun phrases; (2) represent-
ing the cognitive conflicts by a locally ambiguous
context-free grammar generating this language;
(3) decomposing the grammar into unambiguous
parts, with each subgrammar being interpreted as
one processing strategy; (4) constructing appro-
priate pushdown automata as recognizers of these
sublanguages, the parsing process is represented by
a “trajectory” of actual pairs; (5) employing a Godel
encoding on the stack and the input tape of the au-
tomata separately, thus mapping the parser onto a
piecewise affine linear function at the unit square
due to Moore’s proof [Moore, 1990]; (6) merging
the different parsing maps corresponding to the
different processing strategies into one dynamical
system depending on a control parameter, and in-
cluding “repair” maps for intermediate values of
this; (7) preparing randomly an ensemble of points
in the unit square within the initial actual pair of
the parser as initial conditions, iterating the map for
obtaining sets of trajectories that represent further

616 P. b. Graben et al.

states of the parser, invariant sets correspond to
garden path interpretations, then bifurcations serve
as conflict resolutions; (8) determining the entropy
of the parsing states with respect to a measure-
ment partition as a model of event-related cylinder
entropies.

The construction and formal justification of the
model essentially relies on findings of computational
linguistics, automata theory and dynamical system
theory, especially on symbolic dynamics. Of course,
we are fully aware that our model cannot seriously
explain findings from psycholinguistics or cognitive
science — as yet. There are some problems and dif-
ficulties on the one hand, but on the other hand,
given one initial success, our modeling approach
might be worth pursuing further. We shall discuss
some of these issues and their possible solutions in
the concluding paragraphs.

Firstly, we address the psycholinguistic require-
ments of more realistic modeling. One point is
that context-free grammars are not well suited to
describe natural languages [Shieber, 1985]. How-
ever, natural languages share many properties with
context-free languages, chiefly that they can be de-
scribed by hierarchical tree structures (see [Saddy
& Uriagereka, 2004] and [Frisch et al., 2004]). Thus,
even if natural languages were not context-free, this
might hold for certain subsets of speech. The trees
discussed by Frisch et al. [2004] serve as an good
example: they describe the linguistic properties of
the stimulus material of the ERP experiment in the
framework of Chomsky’s Government and Binding
(GB) theory [Haegeman, 1994] that is also com-
monly used by researchers in the field of psycholin-
guistics. Nevertheless, once the trees have been
written down, one could forget everything about
GB theory and sketch a context-free toy-grammar
using only the labels on the nodes of GB trees
to identify the production rules of the grammar.
This would be the first attempt at the construc-
tion of a slightly more realistic model which we are
working on.

We have used very simple parsing devices,
namely deterministic top-down recognizers. Though
there is linguistic evidence that the human parser is
deterministic (otherwise garden path effects would

not appear), it does not pursue a top-down strategy,
but rather follows a left-corner strategy’ [Hemforth,
1993]. Staudacher [1990] has shown that the psy-
cholinguistically motivated Marcus-parser [Marcus,
1980] is in fact a deterministic left-corner parser. It
is therefore desirable to consider these automata for
appropriate modeling.

In Sec. 3.4 we pointed out that Moore’s
proof of the formal equivalence of automata and
nonlinear dynamical systems at the unit square
holds not only for simple top-down parsers but
for any Turing machine. Adopting the Church—
Turing thesis that any possible computation can
be achieved by a Turing machine [Hopcroft &
Ullman, 1979; Hofstadter, 1979], and further adopt-
ing that parsing is computation, we conclude that
the model’s present lack of cognitive appropri-
ateness is not a fundamental objection, because
one could imagine a natural language parser em-
ulated by a Turing machine which can then be
mapped onto a dynamical system using Moore’s
construction. However, Turing machines are not re-
ally interesting for computational linguistics. One
reason for this is their freely accessible mem-
ory tape, whereas cognitive scientists are dealing
with limited capacities of the human computa-
tional system [Mitchell, 1994]. Good candidates for
natural language grammars seem to be, e.g. the
so-called extended right linear indexed grammars
[Michaelis & Wartena, 1999] which allow for de-
pendencies across the structure trees. Although the
languages generated by such grammars do belong
to a higher class of the Chomsky hierarchy,® they
could be processed by automata with less power
than Turing machines since they are highly re-
stricted context-sensitive languages [Michaelis &
Wartena, 1999] that must be processed using tape-
limited automata. Provided the state descriptions
and the machine tables of these automata were
available, one could use the idea of Moore’s proof
again to build a nonlinear dynamics from such
automata. We are currently investigating these
systems and their relations to Moore’s generalized
shifts.

From a psycholinguistic perspective, there is
evidence that the human parser acknowledges the

"In this paper we have dealt only with predicting top-down parsers. There are other parsing strategies known, such as bottom-
up parsing that is data driven or even left-corner parsing which is a mixture of a top-down and a bottom-up parser [Aho &

Ullman, 1972].

8The Chomsky hierarchy is a system of formal languages classified by the computational complexity of the automata required

to process them [Hopcroft & Ullmann, 1979].

presence of syntactic alternatives, in that syntac-
tically ambiguous arguments take longer to read
than their unambiguous counterparts [Schlesewsky
et al., 2000]. In the ERP, this enhanced cost of pro-
cessing ambiguous arguments is reflected in a P600
component [Frisch et al., 2002]. This finding is cru-
cial for theories of language processing insofar as
it does not support serial parsing, that is, the as-
sumption that the parser initially computes only
the structurally simplest analysis independently of
any alternative reading (cf. [Mitchell, 1994]). The
presence of an alternative reading should therefore
not induce enhanced processing cost at the ambigu-
ous items itself, but should come into play only if
the initial preference is incompatible with forthcom-
ing, unambiguous information. That an ambigu-
ous argument is more difficult to process than an
unambiguous one shows that the parser takes the
possibility of several possible analysis into account
from the beginning. However, it was consistently
found that later, namely on the disambiguating el-
ement, not all continuations are equally easy to
process, but that disambiguation towards object-
before-subject are more difficult to process com-
pared to subject-before-object (see above; [Frisch
et al., 2002, 2004; Schlesewsky et al., 2000]). This
shows that the ambiguity is of course acknowledged
but that, after that, the parser prefers one alterna-
tive, here, subject-before-object, to the expense of
others.

The paper of Frisch et al. [2004] tested only the
effects on the disambiguating element, not in the
ambiguous region. Nevertheless, the parsing device
developed in the present paper should be able to
account for the P600 response due to a syntactic
ambiguity found by Frisch et al. [2002] in order to
approach psychological reality. How could this be
accomplished? In the model presented here, a cog-
nitive control unit intervenes into the parsing dy-
namics by tuning the control parameter in order
to account for which rules of the toy-grammar are
chosen initially or for reanalysis. This intervention
differs from the automatic processes of determinis-
tic parsing when a particular rule has to be applied
in order to predict the next word. Therefore, the
intervention must be regarded as more controlled
than parsing. In the case of an unambiguous argu-
ment, tuning the control parameter is cognitively
less costly (since there is only one possibility) com-
pared to an ambiguous argument. It is plausible
that in the latter case, the cognitive control unit

Language Processing by Dynamical Systems 617

acknowledges that more than one possibilities exist
and that a choice has to be made. Assuming that
this choice consumes additional cognitive resources
could account for the finding of the P600 ambiguity
effect in the study of Frisch et al. [2002], seeing that
the P600 was shown to reflect controlled processing
[Hahne & Friederici, 1999].

This last assumption points to another issue
that our approach to modeling highlights, that is,
how to associate behavioral makers with changes of
differences in cognitive processing load. It is the es-
tablished tradition in cognitive psychology and re-
lated disciplines that time equals cost. The more
difficult or complex a process is the more time it will
take. In the ERP literature the elicitation of com-
ponents is interpreted as reflecting differential pro-
cessing loads between one experimental condition
and another. In our dynamical model of parsing,
transitions of the parser are mapped onto changes
in phase space as determined by the calculation of
cylinder entropies. For the sake of the toy-grammar
we have restricted ourselves to the change in phase
space associated with the P600 voltage averaged
component elicited under so-called reanalysis con-
ditions. However, the P600 and related positivi-
ties can be elicited by a variety of experimental
conditions that are not obviously closely related
in processing terms [Frisch et al., 2002]. A pre-
cise understanding of the relation between the ERP
components and the variety of conditions that can
elicit them is still an active research goal. Interest-
ingly, the calculation of cylinder entropies associ-
ated with experimental conditions standardly reveal
more changes in phase space than there are elicited
voltage averaged components. That is to say that
changes in phase space that do not correspond to
ERP components do occur. At the present there
is no good theory of cognitive behavior that pre-
dicts such contrasts. Saddy and beim Graben [2002]
note that the observed phase space changes occur
in the time ranges that match well with Friederici’s
model [Friederici, 1999] and offer a broad interpre-
tation of such changes in system level terms. One
obvious route to pursue in hopes of gaining insight
into the distribution and nature of the entire suite
ERP components and phase space alternations as-
sociated with psycholinguistic manipulations is the
development and extension of computational mod-
els such as those presented here.

The parsers we are dealing with are simple
recognizers. Such automata reach their accepting

618 P. b. Graben et al.

state when both, the stack and the input are com-
pletely discarded. Unfortunately, one loses all in-
formation about the processed input and about its
structural representation. This is a problem with
our model, insofar as a structural representation of
the input is necessary for further linguistic and cog-
nitive analysis, e.g. for semantic and pragmatic un-
derstanding. A structural representation is also in-
dispensable for psycholinguistic modeling since re-
analysis implies changes along the sentence struc-
tures that have been built up during the parsing
process. We are developing such automata gener-
ating and storing a left-derivation of the input in
the stack memory. In order to achieve this, one has
to introduce a “stack pointer” with random access
to a limited part of the stack. This will lead to
generalized shifts with larger domains of definition
in the concatenation of stack and input tape. We
will also be able to address the “costs of reanal-
ysis” in such models when the repair maps need
access to deeper parts of the structures in the stack
thus increasing the complexity of the flow at the
unit square. And finally, such devices would agree
much better with the essential ideas of symbolic dy-
namics: namely that dynamics generates informa-
tion (expressed by the Kolmogorov—Sinai entropy
of the system) during transient evolution. This
is also compatible with the dynamic understand-
ing of information in the sense of von Weizsacker
[1974, p. 352]: “Information is only what gener-
ates information” (see also the contribution of Jirsa
[2004]).

The parameterized maps emulating the parsers
are deterministic dynamical systems whose behav-
ior is completely determined by the initial condi-
tions. These encode, by construction, the strings
to be processed. Hence, any garden path anal-
ysis caused by applying the wrong strategy (an
inappropriate value of the control parameter) is
principally predictable at the very beginning of the
dynamics. This is not consistent with psycholinguis-
tic reasoning. It is also inconsistent with the design
of psycholinguistic experiments where stimuli are
presented item-for-item. We are working on a model
that better fits the reality by splitting the input
tape into a space limited “working memory” belong-
ing to the automaton and a second part belonging
to the “outer world” that is not accessible by the
model. From this outer world tape new symbols are
read in by the system after each attach operation.
Thus, the experimental stimulation is simulated by

a forced dynamical system which is disturbed in its
evolution by the external input.

There are many other questions raised by our
approach. From the natural science point of view:
How might a time discrete piecewise affine linear
map at the unit square be implemented by living
neural networks? How to construe the connection
to the measured time continuous ERP data? Let
us outline a possible solution we are still pursu-
ing. The discrete time map at the unit square
can be regarded as a Poincaré section of a three-
dimensional flow. Then it follows from the proper-
ties of the parsing map that its invariant sets are
sets of limit cycle trajectories. That is, the appro-
priate continuous time dynamics of the embedded
parser are nonlinear oscillators [Guckenheimer &
Holmes, 1983]. And it is well known from neural
modeling that limit cycle oscillators can indeed be
constituted by neural networks [Wilson & Cowan,
1972; Freeman, 2000; Nunez, 1995]. Provided that
such an oscillator model of the parsing dynam-
ics is possible, it would also entail an interface
for the analysis of real time EEG and ERP mea-
surements we are investigating by using symbolic
dynamics.

There is evidence i.e. from the results of Hutt
[2004] that ERP components are fixed points of the
brain dynamics. If this were generally true, it should
be possible to find a two-dimensional embedding of
ERP time series where ERP components are sepa-
rated clusters in the phase space. Then one might
attempt to capture these clusters by the cells of
a partition and to examine the symbolic dynam-
ics thus obtained. The challenging question is then
whether this symbolic dynamics can be interpreted
in terms of automata theory.

Although our parsing dynamics is a function
that maps points in the unit square onto other
points in the unit square, we considered ensembles
of these states in order to interpret them as ac-
tual pairs of the parser. This appears to be cogni-
tively and physiologically not very plausible since
one would expect that a brain state is a point
in its phase space and not an ensemble of ran-
domly distributed states. A possible solution for
this problem could be provided by stochastic dy-
namics: One prepares the parser with only one ran-
domly chosen initial condition belonging to that
rectangle which corresponds to the first actual pair.
That is, one initializes the dynamics with a delta-
shaped probability distribution function. Due to

the impact of the stochastic forces, the time evolu-
tion of the initial probability distribution function
is governed by a Fokker—Planck equation. Then,
the initial probability distribution will spread out
over the unit square when the system evolves thus
leading to an ensemble interpretation of the dy-
namics as desired. However, one has to ensure that
the stochastic forces are agreeable to the parti-
tion of the phase space for maintaining the parsing
interpretation.

Finally let us address a philosophical aspect of
our model. In Sec. 2.6 we computed the informa-
tion content of the states of the parser with re-
spect to an arbitrary measurement partition. That
is a crucial point of symbolic dynamics and in-
formation theory: there are many ways of parti-
tioning the phase space of a dynamical system
(unless a generating partition exists); and as C.
F. von Weizsiacker states: “An ‘absolute’ notion
of information does not make any sense; infor-
mation exists only with respect to another no-
tion, namely relative to two ‘semantic levels’” [von
Weizsécker, 1988, p. 172]. “Semantic levels” in the
sense of von Weizsdcker are, e.g. macro- and mi-
crostates of a dynamical system, where microstates
are considered as points in the phase space, whereas
macrostates are equivalence classes of points all
leading to the same measurement of an observ-
able, such as the energy for the microcanonical en-
semble. That is, macrostates provide a partition of
the system’s state space and hence a symbolic dy-
namics. On the other hand, two partitions of the
state space may be complementary in the sense
of Bohr’s Principle of Complementarity in quan-
tum physics [Bohr, 1948; Atmanspacher et al., 2002;
Atmanspacher, 2003]. The relative arbitrariness of
a symbolic dynamics has a strong impact on the in-
terpretation of our model. Consider once more the
unit square in Fig. 1 without knowing its partition
into the six rectangles which establish the domains
of definition of the parser’s map due to the Godel
encoding. By simulating the deterministic dynamics
of the system there are only clouds of points hop-
ping through the unit square at the lower “semantic
level”. However, after introducing the particu-
lar partition we have used in our construction,
the dynamics of the system becomes interpretable
as language processing at the higher “semantic
level”, i.e. as cognitive computation. We shall dis-
cuss this issue more thoroughly in a forthcoming

paper.

Language Processing by Dynamical Systems 619

Acknowledgments

This work has been supported by the Deutsche
Forschungsgemeinschaft (research group “conflict-
ing rules in cognitive systems”). We want to thank
Peter Staudacher, Jens Michaelis, Giinter Troll,
Harald Atmanspacher, Udo Schwarz and Viktor
Jirsa for stimulating and helpful discussions. Bryan
Jurish acknowledges support from the project
“Collocations in the German Language of the 20th
Century” of the Berlin-Brandenburg Academy of
Sciences.

References

Aho, A. V. & Ullman, J. D. [1972] The Theory of
Parsing, Translation and Compiling Vol. I. Parsing.
(Prentice Hall Englewood Cliffs, NJ).

Allen, J. [1987] Natural Language Understanding.
Benjamin/Cummings Series in Computer Science
(Benjamin/Cummings Publishing Company, Menlo
Park, CA).

Anosov, D. V. & Arnol'd, V. I. (eds.) [1988] Dynami-
cal Systems Encyclopaedia of Math. Sciences, Vol. 1
(Springer, Berlin).

Atmanspacher, H., Romer, H. & Walach, H. [2002]
“Weak quantum theory: Complementarity and entan-
glement in physics and beyond,” Found. Phys. 32,
379-406.

Atmanspacher, H. [2003] “Mind and matter as asymp-
totically disjoint, inequivalent representations with
broken time-reversal symmetry,” BioSystems 68,
19-30.

Basar, E. [1980] EEG-Brain Dynamics. Relations be-
tween EEG and Brain Evoked Potentials (Elsevier/
North Holland Biomedical Press Amsterdam).

Badii, R. & Politi, A. [1997] Complezity. Hierarchical
Structures and Scaling in Physics, Cambridge Non-
linear Science Series, Vol. 6 (Cambridge University
Press Cambridge, UK).

Beck, C. & Schlogl, F. [1993] Thermodynamics of
Chaotic Systems. An Introduction, Cambridge Non-
linear Science Series, Vol. 4 (Cambridge University
Press Cambridge (UK)).

beim Graben, P., Liebscher, T. & Saddy, J. D. [2000a]
“Parsing ambiguous context-free languages by dy-
namical systems: Disambiguation and phase transi-
tions in neural networks with evidence from event-
related brain potentials (ERP),” in Learning to
Behave, eds. Jokinen, K., Heylen, D. & Njiholt,
A., Internalising Knowledge of TWLT 18, Vol. II
(Enschede Universiteit Twente), pp. 119-135.

beim Graben, P., Saddy, J. D., Schlesewsky, M. &
Kurths, J. [2000b] “Symbolic dynamics of event—
related brain potentials,” Phys. Rev. E62, 5518-5541.

620 P. b. Graben et al.

Bennett, C. H. [1982] “The thermodynamics of compu-
tation — a review,” Int. J. Th. Phys. 21, 907-940.
Bohr, N. [1948] “On the notions of causality and com-

plementarity,” Dialectica 2, 312-319.

Collet, P. & Eckmann, J.-P. [1980] Iterated Maps
on the Interval as Dynamical Systems (Birkhauser
Boston).

Crutchfield, J. P. [1994] “The calculi of emergence: Com-
putation, dynamics and induction,” Physica D75,
11-54.

Engbert, R., Scheffczyk, C., Krampe, R. T., Rosenblum,
M., Kurths, J. & Kliegl, R. [1997] “Tempo-induced
transitions in polyrhythmic hand movements,” Phys.
Rev. E56, 5823-5833.

Fodor, J. D. & Ferreira, F. (eds.) [1999] Reanalyis in
Sentence Processing (Kluwer Dordrecht).

Freeman, W. J. [2000] Neurodynamics: An Explo-
ration in Mesoscopic Brain Dynamics. Perspectives
in Neural Computing (Springer Verlag London).

Friederici, A. D. [1999] “The neurobiology of language
comprehension,” Language Comprehension: A Bio-
logical Perspective, ed. Friederici, A. D. (Springer
Berlin), pp. 265-304.

Frisch, S., beim Graben, P. & Schlesewsky, M. [2004]
“Parallelizing grammatical functions: P600 and P345
reflect different cost of reanalysis,” Int. J. Bifurcation
and Chaos 14, 531-549.

Frisch, S., Schlesewsky, M., Saddy, D. & Alpermann, A.
[2002] “The P600 as an indicator of syntactic ambi-
guity,” Cognition 85, B83-B92.

Godel, K. [1931] “Uber formal unentscheidbare Sétze
der principia mathematica und verwandter Sys-
teme 1,” Monatshefte fiir Mathematik und Physik 38,
173-198.

Guckenheimer, J. & Holmes, P. [1983] Nonlinear Oscil-
lations, Dynamical Systems, and Bifurcations of Vec-
tor Fields, Springer Series of Applied Mathematical
Sciences, Vol. 42 (Springer, NY).

Haegeman, L. [1994] Introduction to Goverment & Bind-
ing Theory, Blackwell Textbooks in Linguistics, Vol. 1
(Blackwell Publishers, Oxford).

Hahne, A. & Friederici, A. D. [1999] “Electrophysiologi-
cal evidence for two steps in syntactic analysis: Early
automatic and late controlled processes,” J. Cogn.
Neurosci. 11, 194-205.

Hemforth, B. [1993] Kognitives Parsing: Reprasentation
und Verarbeitung kognitiven Wissens (Infix Sankt
Augustin).

Hofstadter, D. R. [1979] Gddel, Escher, Bach: an Eternal
Golden Braid. (Basic Books, NY).

Hopcroft, J. E. & Ullman, J. D. [1969] Formal Lan-
guages and Their Relation to Automata (Addison-
Wesley Reading, MA).

Hopcroft, J. E. & Ullmann, J. D. [1979] Introduction
to Automata Theory, Languages, and Computation
(Addison-Wesley Menlo Park, California).

Hutt, A. [2004] “An analytical framework for modeling
evoked and event-related potentials,” Int. J. Bifurca-
tion and Chaos 14, 653-666.

Jirsa, V. K. [2004] “Information processing in brain and
behavior displayed in large-scale scalp topographies
such as EEG and MEG,” Int. J. Bifurcation and
Chaos 14, 679-692.

Kawamoto, A. H. [1993] “Nonlinear dynamics in the res-
olution of lexical ambiguity: A parallel distributed
processing account,” J. Memory and Language 32,
474-516.

Kelso, J. A. S., Bressler, S. L., Buchanan, S., DeGuz-
man, G. C., Ding, M., Fuchs, A. & Holroyd, T. [1992]
“A phase transition in human brain and behavior,”
Phys. Lett. A196, 134-144.

Marcus, G. F. [2001] The Algebraic Mind. Integrat-
ing Connectionism and Cognitive Science. Learning,
Delvelopment, and Conceptual Change (MIT Press,
Cambridge, MA).

Marcus, M. [1980] A Theory of Syntactic Recognition for
Natural Language (MIT Press, Cambrigde, MA).

Michaelis, J. & Wartena, C. [1999] “LIGs with reduced
derivation sets,” Constraints and Resources in Natu-
ral Language Syntaz and Semantics, eds. Bouma, G.,
Kruijff, G.-J., Hinrichs, E. & Oehrle, R. T., Stud-
ies in Constrained Based Lexicalism, Vol. II (CSLI
Publications Stanford, CA), pp. 263-279.

Mitchell, D. C. [1994] “Sentence parsing,” Handbook of
Psycholinguistics, ed. Gernsbacher, M. A. (Academic
Press San Diego), pp. 375-409.

Moore, C. [1990] “Unpredictability and undecidability in
dynamical systems,” Phys. Rev. Lett. 64, 2354-2357.

Moore, C. [1991a] “Generalized one-sided shifts and
maps of the interval,” Nonlinearity 4, 727-745.

Moore, C. [1991b] “Generalized shifts: Unpredictability
and undecidability in dynamical systems,” Nonlinear-
ity 4, 199-230.

Nunez, P. L. (ed.) [1995] Neocortical Dynamics and
Human EEG Rhythms (Oxford University Press,
NY).

Ott, E. [1993] Chaos in Dynamical Systems (Cambridge
University Press, NY).

Ragzasek, J., Tuller, B., Shapiro, L. P., Case, P. & Kelso,
S. [1999] “Categorization of ambiguous sentences as a
function of a changing prosodic parameter: A dynam-
ical approach,” J. Psycholing. Res. 28, 367-393.

Saddy, D. & Uriagereka, J. [2004] “Measuring language,”
Int. J. Bifurcation and Chaos 14, 383—404.

Saddy, J. D. & beim Graben, P. [2002] “Measuring
the neural dynamics of language comprehension pro-
cesses,” Basic Fuctions of Language, Reading and
Reading Disorder, eds. Witruk, Friederici, A. D. &
Lachmann, T. (Kluwer Academic Publishers Boston),
pp. 41-60.

Schlesewsky, M., Fanselow, G., Kliegl, R. & Krems, J.
[2000] “Preferences for grammatical functions in the

processing of locally ambigous wh-questions in
German,” Cognitive Parsing i German, eds.
Hemforth, B. & Konieczny, L. (Kluwer Dordrecht),
pp- 65-93.

Schuster, H. G. [1989] Deterministic Chaos (VCH
Weinheim).

Shannon, C. E. & Weaver, W. [1949] The Mathematical
Theory of Communication (University of Illinois Press
Urbana).

Shieber, S. M. [1985] “Evidence against the context-
freeness of natural language,” Ling. Philos. 8,
333-343.

Staudacher, P. [1990] “Ansétze und Probleme prinzip-
ienorientierten Parsens,” Sprache wund Wissen,
eds. Felix, S. W., Kanngiefler, S. & Rickheit, G.
(Westdeutscher Verlag Opladen), pp. 151-189.

Language Processing by Dynamical Systems 621

Tomita, M. [1987] “An efficient augmented-context-free
parsing algorithm,” Comput. Ling. 13, 31-46.

van Gelder, T. [1998] “The dynamical hypothesis in
cognitive science,” Behav. Brain Sci. 21, 615-628.

von Weizsicker, C. F. [1988] Aufbau der Physik (DTV
Miinchen).

von Weizsdcker, C. F. [1974] Die Finheit der Natur
(DTV Miinchen).

Wilson, H. R. & Cowan, J. D. [1972] “Excitatory and in-
hibitory interactions in localized populations of model
neurons,” Biophys. J. 12, 1-24.

Wright, J., Rennie, C., Lees, G., Robinson, P., Bourke,
P., Chapman, C., Gordon, E. & Rowe, D. [2004]
“Simulated electrocortical activity at microscopic,
mesoscopic and global scales,” Int. J. Bifurcation and
Chaos 14, 853-872.

