
Bryan Jurish

More Than Words: Using Token Context to Improve Canonical-
ization of Historical German

1 Introduction

Historical text presents numerous challenges for contemporary natural language pro-
cessing techniques. In particular, the absence of consistent orthographic conventions
in historical text presents difficulties for any system requiring reference to a fixed
lexicon accessed by orthographic form, such as information retrieval systems (Sokirko,
2003; Cafarella and Cutting, 2004), part-of-speech taggers (DeRose, 1988; Brill, 1992;
Schmid, 1994), simple word stemmers (Lovins, 1968; Porter, 1980), or more sophisticated
morphological analyzers (Geyken and Hanneforth, 2006; Zielinski et al., 2009).1
Traditional approaches to the problems arising from an attempt to incorporate

historical text into such a system rely on the use of additional specialized (often
application-specific) lexical resources to explicitly encode known historical variants.
Such specialized lexica are not only costly and time-consuming to create, but also – in
their simplest form of static finite word lists – necessarily incomplete in the case of a
morphologically productive language like German, since a simple finite lexicon cannot
account for highly productive morphological processes such as nominal composition (cf.
Kempken et al., 2006).
To facilitate the extension of synchronically-oriented natural language processing

techniques to historical text while minimizing the need for specialized lexical resources,
one may first attempt an automatic canonicalization of the input text. Canonicalization
approaches (Jurish, 2008, 2010a; Gotscharek et al., 2009a) treat orthographic variation
phenomena in historical text as instances of an error-correction problem (Shannon,
1948; Kukich, 1992; Brill and Moore, 2000), seeking to map each (unknown) word of the
input text to one or more extant canonical cognates: synchronically active types which
preserve both the root and morphosyntactic features of the associated historical form(s).
To the extent that the canonicalization was successful, application-specific processing
can then proceed normally using the returned canonical forms as input, without any
need for additional modifications to the application lexicon.

I distinguish between type-wise canonicalization techniques which process each input
word independently and token-wise techniques which make use of the context in which
a given instance of a word occurs. In this paper, I present a token-wise canonicalization

1While neither information retrieval (IR) systems nor stemmers use a static fixed lexicon in the
usual sense, the effective lexicon of an IR system is fixed at indexing time as the set of all
actually occurring word forms. Similarly, the lexicon of a traditional stemmer has a static portion
(hard-coded inflection rules) as well as a dynamic portion (set of stems) determined by the actual
input. In both cases, historical spelling variants will be treated as distinct lexemes rather than
associated with an equivalent contemporary cognate unless additional measures such as those
described here are taken.

JLCL 2010 – Band 25 (1) – 23-39

Jurish

method which functions as a disambiguator for sets of hypothesized canonical forms as
returned by one or more subordinated type-wise techniques. Section 2 provides a brief
review of the type-wise canonicalizers used to generate hypotheses, while section 3 is
dedicated to the formal characterization of the disambiguator itself. Section 4 contains a
quantitative evaluation of the disambiguator’s performance on an information retrieval
task over a manually annotated corpus of historical German. Finally, section 5 provides
a brief summary and conclusion.

2 Type-wise Conflation

Type-wise conflation techniques are those which process each input word in isolation,
independently of its surrounding context. Such a type-wise treatment allows efficient
processing of large documents and corpora (since each input type need only be processed
once), but disregards potentially useful context information. Formally, a type-wise
conflator r is fully specified by a characteristic conflation relation ∼r, a binary relation
on the set A∗ of all strings over the finite grapheme alphabet A. Prototypically, ∼r
will be a true equivalence relation, inducing a partitioning of the set A∗ of possible
word types into equivalence classes or “conflation sets” [w]r = {v ∈ A∗ : v ∼r w}
induced by some type w ∈ A∗. Where appropriate, I distinguish between the full
conflation set [w]r containing all strings conflated by r with w and a conflator-specific
finite subset ↓[w]r ⊆ [w]r representing the canonicalization hypotheses provided by r
for w: the former sets will be used to characterize the retrieval function for r used to
define the evaluation measures precision and recall in section 4.2, while the latter will be
used in the definition of the token-wise disambiguator in section 3.3. Unless otherwise
specified, I assume ↓[w]r = [w]r. In the sequel, I will use the terms “conflation” and
“type-wise canonicalization” interchangeably where no ambiguity will result, and the
term “conflator” will be used to refer to a specific type-wise canonicalization method.

2.1 String Identity

The simplest of all possible conflators is raw identity of surface strings. The conflation
relation ∼id is in this case nothing more or less than the string identity relation itself:

w ∼id v :⇔ w = v (1)

String identity is the easiest conflator to implement (no additional programming effort
or resources are required) and provides a high degree of precision, “false friends” being
limited to historical homographs such as the historical form wider when it occurs as a
variant of the contemporary form wieder (“again”) rather than the lexically distinct
contemporary homograph wider (“against”). Since its coverage is restricted to valid
contemporary forms, string identity cannot account for any spelling variation at all,
resulting in very poor recall – many relevant types are not retrieved in response to a
query in current orthography. Nonetheless, its inclusion as a conflator ensures that the

24 JLCL

More Than Words

set of candidate hypotheses [w] for a given input word w is non-empty,2 and it provides
a baseline with respect to which the relative utility of more sophisticated conflators can
be evaluated.

As an example, consider the historical form Abſt e
ande, a variant of the contemporary

cognate Abstände (“distances”). The conflation set [Abſt e
ande]id = {Abſt e

ande} is non-
empty, but does not contain the desired contemporary cognate (Abstände 6∈ [Abſt e

ande]id),
so Equation (20) from section 4.2 dictates that no instances of the historical variant
Abſt e

ande will be retrieved via string identity for a query of the contemporary form
Abstände.

2.2 Transliteration

A slightly less naïve family of conflation methods are those which employ a simple
deterministic transliteration function to replace input characters which do not occur in
contemporary orthography with extant equivalents. Formally, a transliteration conflator
is defined in terms of a character transliteration function xlit : A → Ã∗, where A is as
before a “universal” grapheme alphabet (e.g. the set of all Unicode3 characters) and
Ã ⊆ A is that subset of the universal alphabet allowed by contemporary orthographic
conventions. The elementary character transliteration function is extended to a string
transliteration function xlit∗ : A∗ → Ã∗ in the usual manner by iteratively applying xlit
to each character of the input string in turn (Equation 2), canonicalization hypotheses
are limited to the transliterator output (Equation 3), and the characteristic conflation
relation ∼xlit is defined as identity of transliterated strings (Equation 4):

xlit∗(a1a2 . . . an) := xlit(a1) xlit(a2) . . . xlit(an) (2)
↓[w]xlit := {xlit∗(w)} (3)

w ∼xlit v :⇔ xlit∗(w) = xlit∗(v) (4)

In the case of historical German, deterministic transliteration is especially useful for
its ability to account for typographical phenomena, e.g. by mapping ‘ſ’ (long ‘s’, as
commonly appeared in texts typeset in fraktur) to a conventional round ‘s’, and mapping
superscript ‘e’ to the conventional Umlaut diacritic ‘¨’, as in the transliteration Abſt e

ande
7→ Abstände (“distances”). Given this transliteration, a query for the contemporary
form Abstände will successfully retrieve all instances of the historical form Abſt e

ande:
xlit∗(Abstände) = Abstände = xlit∗(Abſt e

ande), so Abstände ∈ [Abſt e
ande]xlit.

The current work makes use of a conservative transliteration function based on
the Text::Unidecode Perl module.4 Due to the fact that the underlying character
transliteration table is comparatively small and can be implemented as an in-memory

2Since [w]id = {w}, [w]id ⊆ [w] implies w ∈ [w], and thus [w] 6= ∅. Since the more reliable
transliterating conflator described in section 2.2 also ensures a non-empty set of conflation
hypotheses, the identity conflator itself was not used to generate hypotheses for the disambiguator
in the current experiments.

3Unicode Consortium (2011), http://www.unicode.org/
4http://search.cpan.org/~sburke/Text-Unidecode-0.04/

Band 25 (1) – 2010 25

Jurish

array, transliteration is a very efficient conflation method, with O(xlit) = O(1) and
therefore O(xlit∗) = O(n). In terms of expressive power, since xlit is finite, it can be
represented by a finite state transducer, and therefore so can its reflexive and transitive
closure xlit∗.
Despite its efficiency, and although it outdoes even string identity in terms of its

precision, deterministic transliteration suffers from its inability to account for spelling
variation phenomena involving extant characters such as the th/t and ey/ei allographs
common in historical German. As an example, consider an instance of the historical
form Theyl corresponding to the contemporary cognate Teil (“part”). Both historical
and contemporary forms will be transliterated to themselves, since both strings contain
only extant characters, but the historical form will not be retrieved by a query for the
contemporary form: xlit∗(Teil) = Teil 6= Theyl = xlit∗(Theyl) implies Teil 6∼xlit Theyl
and therefore Teil 6∈ [Theyl]xlit.

2.3 Phonetization

A more powerful family of conflation methods is based on the dual intuitions that
graphemic forms in historical text were constructed to reflect phonetic forms5 and
that the phonetic system of the target language is diachronically more stable than its
graphematic system. Phonetic conflators map each (historical or extant) word w ∈ A∗
to a unique phonetic form pho(w) by means of a computable function pho : A∗ → P∗,6
conflating those strings which share a common phonetic form:

w ∼pho v :⇔ pho(w) = pho(v) (5)

Since [w]pho may be infinite – if for example pho(·) maps any substring of one or
more instances of a single character (e.g. ‘a’) to a single phone (e.g. [a]) – additional
care must be taken to ensure a finite set of canonicalization hypotheses ↓[w]pho. A
straightforward way to ensure a finite hypothesis set is simply to restrict [w]pho to some
finite set of pre-defined target strings T ⊂ A∗, setting ↓[w]pho = ↓T [w]pho = [w]pho ∩ T .
If pho can be represented as a finite-state transducer Mpho and the target lexicon can
be represented as a finite-state acceptor ALex, a more robust alternative is to use a
k-best string lookup algorithm such as that described in Jurish (2010b) on the cascade
Cpho(w) = Id(w)◦Mpho ◦M−1

pho ◦ALex, defining ↓[w]pho = ↓C,k[w]pho = kbest(k, Cpho(w))
for some finite upper bound k on the number of admissible hypotheses, assuming an
appropriate weighting scheme on ALex.
The phonetic conversion module used here was adapted from the phonetization

rule-set distributed with the IMS German Festival package (Möhler et al., 2001), a
German language module for the Festival text-to-speech system (Black and Taylor, 1997)

5Keller (1978) codified this intuition as the imperative “write as you speak” governing historical
spelling conventions.

6P is a finite phonetic alphabet.

26 JLCL

More Than Words

and compiled as a finite-state transducer (Jurish, 2008).7 Phonetic conflation offers a
substantial improvement in recall over conservative methods such as transliteration or
string identity: variation phenomena such as the th/t and ey/ei allographs mentioned
above are correctly captured by the phonetization transducer: pho(Theyl) = [taIl]
= pho(Teil) which implies Teil ∈ [Theyl]pho. Unfortunately, these improvements
often come at the expense of precision: in particular, many high-frequency types are
misconflated by the simplified phonetization rule-set, including *in ∼ ihn (“in” ∼
“him”), *statt ∼ Stadt, (“instead” ∼ “city”), and *wider ∼ wieder (“against” ∼ “again”).
While such high-frequency cases might be easily handled in a mature system by a small
exception lexicon, the underlying tendency of strict phonetic conflation either to over-
or to under-generalize – depending on the granularity of the phonetization function – is
likely to remain, expressing itself in information retrieval tasks as reduced precision or
reduced recall, respectively.

2.4 Rewrite Transduction

Despite its comparatively high recall, the phonetic conflator fails to relate unknown
historical forms with any extant equivalent whenever the graphemic variation leads
to non-identity of the respective phonetic forms (e.g. pho(umb) = [PUmp] 6= [PUm] =
pho(um) for the historical variant umb of the preposition um (“around”)), suggesting
that recall might be further improved by relaxing the strict identity criterion on the right
hand side of Equation (5). Moreover, a fine-grained and appropriately parameterized
conflator should be less susceptible to precision errors than an “all-or-nothing” (phonetic)
identity condition (Kondrak, 2000, 2002). A technique which fulfills both of the above
desiderata is rewrite transduction, which can be understood as a generalization of the
well-known string edit distance (Damerau, 1964; Levenshtein, 1966).

Formally, let Lex ⊆ A∗ be the (possibly infinite) lexicon of all extant forms encoded
as a finite-state acceptor ALex, and let Mrw be a weighted finite-state transducer over a
bounded semiring K which models (potential) diachronic change likelihood as a weighted
rational relation. Then define for every input type w ∈ A∗ the “best” extant equivalent
bestrw(w) as the unique extant type v ∈ Lex with minimal edit-distance to the input
word:

bestrw(w) = arg min
v∈A∗

JMrw ◦ALexK(w, v) (6)

Ideally, the image of a word w under bestrw will itself be the canonical cognate sought,
leading to conflation of all strings which share a common image under bestrw:

w ∼rw v :⇔ bestrw(w) = bestrw(v) (7)

7In the absence of a language-specific phonetization function, a general-purpose phonetic digest
algorithm such as soundex (Russell, 1918), the Kölner Phonetik (Postel, 1969), phonix (Gadd,
1988, 1990), or Metaphone (Philips, 1990, 2000) may be employed instead (Robertson and Willett,
1993; Kempken, 2005).

Band 25 (1) – 2010 27

Jurish

The current experiments were performed using the heuristic rewrite transducer de-
scribed in Jurish (2010a), compiled from 306 manually constructed two-level rules, while
the lexical target acceptor ALex was extracted from the tagh morphology transducer
(Geyken and Hanneforth, 2006). The native tagh weights were scaled for compatibility
and used to provide a prior cost distribution over target word forms based on their
derivational complexity. Best-path lookup was performed using a specialized variant
of the well-known Dijkstra algorithm (Dijkstra, 1959) as described in Jurish (2010b).
Related approaches to historical variant detection include Kempken (2005); Rayson
et al. (2005); Ernst-Gerlach and Fuhr (2006); Gotscharek et al. (2009a).
Although this rewrite cascade does indeed improve both precision and recall with

respect to the phonetic conflator, these improvements are of comparatively small mag-
nitude, precision in particular remaining well below the level of conservative conflators
such as naïve string identity or transliteration, due largely to interference from “false
friends” such as the valid contemporary compound Rockermehl (“rocker-flour”) for the
historical variant Rockermel of the contemporary form Rockärmel (“coat-sleeve”) as
appearing in Figure 1.

3 Token-wise Disambiguation

In an effort to recover some degree of the precision offered by conservative conflation
techniques such as transliteration while still benefiting from the flexibility and im-
proved recall provided by more ambitious techniques such as phonetization or rewrite
transduction, I have developed a method for disambiguating type-wise conflation sets
which operates on the token level, using sentential context to determine a unique “best”
canonical form for each input token. Specifically, the disambiguator employs a Hidden
Markov Model (HMM) whose lexical probability matrix is dynamically re-computed
for each input sentence from the conflation sets returned by one or more subordinated
type-wise conflators, and whose transition probabilities are given by a static word
k-gram model of the target language, in this case contemporary German adhering to
current orthographic conventions. Similar approaches for traditional spell-checking
applications using strictly local context for language modelling have been described by
Kernighan et al. (1990); Church and Gale (1991); Brill and Moore (2000); Verberne
(2002). Most closely related to the current proposal is the approach of Mays et al. (1991),
who use a word trigram model to disambiguate unweighted confusion sets returned
by a traditional approximate Damerau-Levenshtein matcher analogous to the rewrite
cascade from section 2.4. An example of the proposed disambiguation architecture for
the conflators described in section 2 is given in Figure 1.

3.1 Basic Model

Formally, let W ⊂ Ã∗ be a finite set of known extant words, let u 6∈ W be a designated
symbol representing an unknown word, let S = 〈w1, . . . , wnS 〉 be an input sentence of
nS (historical) words with wi ∈ A∗ for 1 ≤ i ≤ nS , and let R = {r1, . . . , rnR} be a

28 JLCL

More Than Words

Dete sammlete Steyne im Ro�ermel

id Dete ſammlete Steyne im Rockermel
xlit Dete sammlete Steyne im Rockermel
pho ∅ ∅ {Steine} {im, ihm} {Rockärmel}

rw Tete〈1〉 sammelte〈5〉 Steine〈1〉 im〈0〉 Rockermehl〈10〉
hmm Dete sammelte Steine im Rockärmel

Figure 1: Example of the proposed conflator disambiguation architecture for the input sentence
“Dete ſammlete Steyne im Rockermel” (“Dete gathered rocks in the coat-sleeve”). Costs
assigned by the rewrite transducer appear in angled brackets, and the conflation hypotheses
selected by the HMM disambiguator are underlined.

finite set of (opaque) type-wise conflators. Then, the disambiguator HMM is defined in
the usual way (Rabiner, 1989; Charniak et al., 1993; Manning and Schütze, 1999) as
the 5-tuple D = 〈Q,OS , π, A,BS〉, where:

1. Q = (W ∪ {u}) × R is a finite set of model states, where each state q ∈ Q is a
pair 〈w̃q, rq〉 composed of an extant word form w̃q and a conflator rq;

2. OS =
⋃nS

i=1{wi} is the set of observations for the input sentence S;

3. π : Q → [0, 1] : q 7→ p(Q1 = q) is a static probability distribution over Q
representing the model’s initial state probabilities;

4. A : Qk → [0, 1] : 〈q1, . . . , qk〉 7→ p(Qi = qk|Qi−k+1 = q1, . . . , Qi−1 = qk−1) is a
static conditional probability distribution over state k-grams representing the
model’s state transition probabilities; and

5. BS : Q × OS → [0, 1] : 〈q, o〉 7→ p(O = o|Q = q) is a dynamic probability
distribution over observations conditioned on states representing the model’s
lexical probabilities.

Using the shorthand notation wi+ji for the string wiwi+1 . . . wi+j , the model D
computes sentential probability as the sum of path probabilities over all possible
generating state sequences:

p(S = wnS
1) =

∑
q

nS
1 ∈QnS

p(S = wnS
1 , Q = qnS

1) (8)

Assuming suitable boundary handling for negative indices, joint path probabilities
themselves are computed as:

p(S = wnS
1 , Q = qnS

1) =
nS∏
i=1

p(qi|qi−1
i−k+1)p(wi|qi) (9)

Band 25 (1) – 2010 29

Jurish

Underlying these equations are the following Markov assumptions:

p(qi|qi−1
1 , wi−1

1) = p(qi|qi−1
i−k+1) (10)

p(wi|qi1, wi−1
1) = p(wi|qi) (11)

Equation (10) asserts that state transition probabilities depend on at most the
preceding k − 1 states. Equation (11) asserts the independence of observed surface
forms (historical spellings) from all but the model’s current state. Taken together,
these assumptions will lead to the use of a k-gram distribution over contemporary word
forms to model both syntactic and (local) semantic constraints of the target language
as operating on conflator-dependent type-wise canonicalization hypotheses for historical
input forms. Crucially, the product of these two component distributions as used
in the path probability computation from Equation (9) will allow linguistic context
constraints (insofar as they are captured by the k-gram transition probabilities) to
override prior type-wise estimates of a conflation’s reliability (and vice versa), leading
to a disambiguator dependent on both token context and prior estimates of conflation
likelihood.

3.2 Transition Probabilities

The finite target lexicon W can easily be extracted from a corpus of contemporary text.
For estimating the static distributions π and A, we first make the following assumptions:

p(Q = 〈w̃q, rq〉) = p(W = w̃q)p(R = rq) (12)

p(R = r) = 1
nR

(13)

Equation (12) asserts the independence of extant forms and conflators, while Equa-
tion (13) assumes a uniform distribution over conflators. Given these assumptions, the
static state distributions π and A can be estimated as:

π(q) :≈ p (W1 = w̃q) /nR (14)
A(q1, . . . , qk) :≈ p

(
Wi = w̃qk |W

i−1
i−k+1 = w̃q1 . . . w̃qk−1

)
/nR (15)

Equations (14) and (15) are nothing more or less than a word k-gram model over extant
forms, scaled by the constant 1

nR
. One can therefore use standard maximum likelihood

techniques to estimate π and A from a corpus of contemporary text (Bahl et al., 1983;
Manning and Schütze, 1999).
For the current experiments, a word trigram model (k = 3) was trained on the

tiger corpus of contemporary German (Brants et al., 2002). Probabilities for the
“unknown” form u were computed using the simple smoothing technique of assigning u
a pseudo-frequency of 1

2 (Lidstone, 1920; Manning and Schütze, 1999). To account for
unseen trigrams, the resulting trigram model was smoothed by linear interpolation of

30 JLCL

More Than Words

uni-, bi-, and trigrams (Jelinek and Mercer, 1980, 1985), using the method described
by Brants (2000) to estimate the interpolation coefficients.

3.3 Lexical Probabilities

In the absence of a representative corpus of conflator-specific manually annotated
training data, simple maximum likelihood techniques cannot be used to estimate the
model’s lexical probabilities BS . Instead, lexical probabilities are instantiated as a
Maxwell-Boltzmann distribution for a set dr of conflator-specific distance functions
(Jaynes, 1983):

B
(
〈w̃, r〉, w

)
:≈ bβdr(w,w̃)∑

r′∈R

∑
w̃′∈↓[w]r′

bβdr′ (w,w̃′)
(16)

Here, b, β ∈ R are free model parameters with b ≥ 1 and β ≤ 0. For a conflator r ∈ R,
the function dr : A∗ ×W → R+ is a pseudo-metric used to estimate the reliability of
the conflator’s association of an input word w with the extant form w̃, and the set
↓[w]r ⊆ [w]r ⊆ A∗ is a finite set of canonicalization hypotheses provided by r for w, as
described in section 2.
It should be explicitly noted that the denominator of the right-hand side of Equa-

tion (16) is a sum over all model states (canonicalization hypotheses) 〈w̃′, r′〉 actually
associated with the observation argument w by the type-wise conflation stage, and
not a sum over observations w′ associable with the state argument 〈w̃, r〉. This lat-
ter sum (if it could be efficiently computed) would adhere to the traditional form(
sim(o, q)/

∑
o′ sim(o′, q)

)
for estimating a probability distribution p(O|Q) over ob-

servations conditioned on model states such as the HMM lexical probability matrix
BS is defined to represent; whereas the estimator in Equation (16) is of the form(
sim(o, q)/

∑
q′ sim(o, q′)

)
, which corresponds more closely to a distribution p(Q|O)

over states conditioned on observations.8
From a practical standpoint, it should be clear that Equation (16) is much more

efficient to compute than an estimator summing globally over potential observations,
since all the data needed to compute Equation (16) are provided by the type-wise
preprocessing of the input sentence S itself, whereas a theoretically pure global estimator
would require a whole arsenal of inverse conflators as well as a mechanism for restricting
their outputs to some tractable set of admissible historical forms, and hence would be
of little practical use. From a formal standpoint, I believe that Equation (16) as used
in the run-time disambiguator can be shown to be equivalent to a global estimator,
provided that the conflator pseudo-metrics dr are symmetric and the languages of both
historical and extant forms have identical and uniform density with respect to the dr,
but a proof of this conjecture is beyond the scope of this paper.
It was noted above in Section 2.3 that for the phonetic conflator in particular, the

equivalence class [w]pho = {v ∈ A∗ : w ∼pho v} may not be finite. In order to ensure the
8See the discussion surrounding Equation 20 in Charniak et al. (1993) for a more detailed look at
these two sorts of lexical probability estimator and their effects on HMM part-of-speech taggers.

Band 25 (1) – 2010 31

Jurish

computational tractability of Equation (16) therefore, the phonetic conflation hypotheses
considered were implicitly restricted to the finite set W of known extant forms used
to define the model’s states, ↓[w]pho = ↓W [w]pho = [w]pho ∩W. Transliterations and
rewrite targets which were not also known extant forms were implicitly mapped to the
designated symbol u for purposes of estimating transition probabilities for previously
unseen extant word types.
For the current experiments, the following model parameters were used:

b = 2
β = −1
R = {xlit, pho, rw}

dxlit(w, w̃) = 2/|w| if w̃ = xlit∗(w)
dpho(w, w̃) = 1/|w| if w̃ ∈ ↓[w]pho
drw(w, w̃) = JMrw ◦ALexK(w, w̃)/|w| if w̃ = bestrw(w)

In all other cases, dr(w, w̃) is undefined and B(〈w̃, r〉, w) = 0. Note that all conflator
distance functions are scaled by inverse input word length 1

|w| , thus expressing an average
distance per input character as opposed to an absolute distance for the input word.
Defining distance functions in terms of (inverse) word length in this manner captures the
intuition that a conflator is less likely to discover a false positive conflation for a longer
input word than for a short one; natural language lexica tending to be maximally dense
for short (usually closed-class) words.9 The transliteration and phonetic conflators are
constants given input word length, whereas the rewrite conflator makes use of the cost
JMrw ◦ALexK(w, w̃) assigned to the conflation pair by the rewrite cascade itself.

3.4 Runtime Disambiguation

Having defined the disambiguator model D, it can be used it to determine a unique
“best” canonical form for each input sentence S by application of the well-known Viterbi
algorithm (Viterbi, 1967). Formally, the Viterbi algorithm computes the state path
with maximal probability for the observed sentence:

Viterbi(S,D) = arg max
〈q1,...,qnS

〉∈QnS

p(q1, . . . , qnS , S|D) (17)

Extracting the disambiguated canonical forms Ŝ = 〈ŵ1, . . . , ŵnS 〉 ∈ (A∗)nS from the
state sequence Q̂ = 〈q̂1, . . . , q̂nS 〉 = Viterbi(S,D) returned by the Viterbi algorithm
is a simple matter of projecting the extant word components of the HMM state
structures, taking care to map the designated symbol u onto an appropriate output

9Despite this tendency of natural languages, the combinatorial properties of concatenative monoids
dictate that the number of potential “false friends” grows exponentially with input string length
if for example arbitrary substitutions are allowed, suggesting an increased likelihood of false
positive conflations for longer input words. In this context, note that the use of per-character
distances results in higher-entropy probability distributions (Shannon, 1948) for longer input
strings, effectively treating the dr distance estimates as increasingly unreliable as input string
length grows.

32 JLCL

More Than Words

string. Let witness : ℘(A∗) → A∗ be a choice function over conflation hypotheses,10

witness(↓[w]r) ∈ ↓[w]r for all w ∈ A∗, r ∈ R with ↓[w]r 6= ∅, and for 1 ≤ i ≤ nS , define:

ŵi :=
{

witness
(
↓[w]rq̂i

)
if w̃q̂i = u

w̃q̂i otherwise
(18)

Following the equivalence class notation for type-wise conflators, I write [wi]hmm,D
to denote the singleton set {ŵi} containing the unique canonical form returned by the
HMM disambiguator D for an input token wi in sentential context S, omitting the
model subscript D where no ambiguity will result.

3.5 Expressive Power

It was noted in section 2 above that each of the type-wise conflators used in the current
approach have representations as (weighted) finite-state transducers (WFSTs). Since
the union of WFSTs is itself a WFST, as is the concatenation of WFSTs (Mohri,
2009), the type-wise analysis stage which generates canonicalization hypotheses for
the disambiguator can be expressed by an extended rational algebraic expression,
assuming specialized functions such as the k-best lookup used by the rewrite transducer
are included in the inventory of admissible operations. Hidden Markov Models have
been shown to be equivalent to the sub-family of WFSTs called probabilistic finite-
state automata (PFSAs) by Vidal et al. (2005). Pereira and Riley (1997) advocate a
decomposition of HMM component distributions into dedicated WFSTs which may
then be cascaded (composed) to simulate the original HMM for use in speech processing
applications. Hanneforth and Würzner (2009) present a technique for creating n-gram
language models using only the algebra of weighted rational languages which can in
principle be extended to implement the disambiguator’s dynamic lexical probability
distribution given by Equation (16) as just such a dedicated WFST component. Finally,
since the Viterbi algorithm can be applied directly to PFSAs (Vidal et al., 2005) and
with minimal adaptation to appropriately weighted WFSTs (Mohri, 2002; Jurish, 2010b),
the entire proposed canonicalization architecture does not exceed the expressive power
of the weighted rational relations.

4 Evaluation

4.1 Test Corpus

The conflation and disambiguation techniques described above were tested on a manually
annotated corpus of historical German drawn from the Deutsches Textarchiv.11 The
test corpus was comprised of the full body text from 13 volumes published between
1780 and 1880, and contained 152,776 tokens of 17,417 distinct types in 9,079 sentences,
10Since conflation hypothesis sets ↓[w]r are finite, the axiom of choice is not strictly required here.
11http://www.deutschestextarchiv.de

Band 25 (1) – 2010 33

Jurish

discounting non-alphabetic types such as punctuation. To assign an extant canonical
equivalent to each token of the test corpus, the text of each volume was automatically
aligned token-wise with a contemporary edition of the same volume. Automatically
discovered non-identity alignment pair types were presented to a human annotator for
confirmation. In a second annotation pass, all tokens lacking an identical or manually
confirmed alignment target were inspected in context and manually assigned a canonical
form. Whenever they were presented to a human annotator, proper names and extinct
lexemes were treated as their own canonical forms. In all other cases, equivalence
was determined by direct etymological relation of the root in addition to matching
morphosyntactic features. Problematic tokens were marked as such and subjected to
expert review. Marginalia, front and back matter, speaker and stage directions, and
tokenization errors were excluded from the final evaluation corpus.

4.2 Evaluation Measures

The canonicalization methods from sections 2 and 3 were evaluated using the gold-
standard test corpus to simulate an information retrieval task Formally, let C =
{c1, . . . , cnC} be a finite set of canonicalizers, and let G = 〈g1, . . . , gnG〉 represent the
test corpus, where each token gi is a (2 + nC)-tuple gi = 〈wi, w̃i, [wi]c1 , . . . , [wi]cnC

〉 ∈
A∗ × A∗ × ℘(A∗)nC , for 1 ≤ i ≤ nG. Here, wi represents the literal token text as
appearing in the historical corpus, w̃i is its gold-standard canonical cognate, and
[wi]cj is the set of canonical forms assigned to the token by the canonicalizer cj , for
1 ≤ j ≤ nC . Let Q =

⋃nG

i=1{w̃i} be the set of all canonical cognates represented in
the corpus, and define for each canonicalizer c ∈ C and query string q ∈ Q the sets
relevant(q), retrievedc(q) ⊂ N of relevant and retrieved corpus tokens as:

relevant(q) = {i ∈ N : q = w̃i} (19)
retrievedc(q) = {i ∈ N : q ∈ [wi]c} (20)

Token-wise precision (prtok,c) and recall (rctok,c) for the canonicalizer c can then be
defined as:

prtok,c =

∣∣∣⋃q∈Q retrievedc(q) ∩ relevant(q)
∣∣∣∣∣∣⋃q∈Q retrievedc(q)

∣∣∣ (21)

rctok,c =

∣∣∣⋃q∈Q retrievedc(q) ∩ relevant(q)
∣∣∣∣∣∣⋃q∈Q relevant(q)

∣∣∣ (22)

Type-wise measures prtyp,c and rctyp,c are defined analogously, by mapping the token
index sets of Equations (19) and (20) to corpus types before applying Equations (21)
and (22). I use the unweighted harmonic precision-recall average F (van Rijsbergen,

34 JLCL

More Than Words

% Types % Tokens
c prtyp rctyp Ftyp prtok rctok Ftok

id 99.0 59.2 74.1 99.8 79.3 88.4
xlit 99.1 89.5 94.1 99.8 96.8 98.3
pho 97.1 96.1 96.6 91.4 99.2 95.1
rw 97.6 96.5 97.0 94.3 99.3 96.7

hmm 98.6 95.3 96.9 99.7 99.1 99.4

Table 1: Evaluation data for various canonicalization techniques with respect to the Deutsches
Textarchiv evaluation subset. The maximum value in each column appears in boldface
type.

id xlit pho rw hmm
88%

90%

92%

94%

96%

98%

100%

Types

pr
rc
F

id xlit pho rw hmm
88%

90%

92%

94%

96%

98%

100%

Tokens

pr
rc
F

Figure 2: Evaluation data for various canonicalization techniques: visualization

1979) as a composite measure for both type- and token-wise evaluation modes:

F(pr, rc) = 2 · pr · rc
pr + rc

(23)

I follow Charniak et al. (1993) in using relative error reduction rates rather than
absolute differences when comparing the performance of different canonicalizers. The
general form for the (relative) error reduction in evaluation mode x provided by a
method c2 over method c1 is: xc2−xc1

1−xc1
, assuming 0 ≤ xc1 ≤ xc2 ≤ 1. For example,

given the data in Table 1, the error reduction in type-wise recall x = rctyp provided by
c2 = rw with respect to c1 = xlit is rctyp,rw − rctyp,xlit

1−rctyp,xlit
= .965−.895

1−.895 ≈ 0.67 = 67%.

4.3 Results

Evaluation results for the canonicalization techniques described in sections 2 and 3 with
respect to the test corpus are given in Table 1 and graphically depicted in Figure 2.
Immediately apparent from the data is the typical precision–recall trade-off pattern

Band 25 (1) – 2010 35

Jurish

discussed above: conservative conflators such as string identity (id) and transliteration
(xlit) have near-perfect precision (≥ 99% both type- and token-wise), but relatively
poor recall. On the other hand, ambitious conflators such as phonetic identity (pho) or
the heuristic rewrite transducer (rw) reduce type-wise recall errors by over 66% and
token-wise recall errors by over 75% with respect to transliteration, but these recall
gains come at the expense of precision.

As hoped, the HMM disambiguator (hmm) presented in Section 3 does indeed recover
a large degree of the precision lost by the ambitious type-wise conflators, achieving
a reduction of over 41% of type-wise precision errors and of over 94% of token-wise
precision errors with respect to the heuristic rewrite conflator. While some additional
recall errors are made by the HMM, there are comparatively few of these, so that
the type-wise harmonic average F falls by a mere 0.1% in absolute magnitude (3%
relative error introduction) with respect to the highest-recall method (rw). Indeed, the
token-wise composite measure F is substantially higher for the HMM disambiguator
(99.4%, vs. 96.7% for the rewrite method), with an error reduction rate of over 64%
compared to its closest competitor, deterministic transliteration (xlit).

The most surprising aspect of these results is the recall performance of the conservative
transliterator xlit with rctok = 96.8%, reducing token-wise recall errors by over 84%
compared to the naïve string identity method. While such performance combined with
the ease of implementation and computational efficiency of the transliteration method
makes it very attractive at first glance, note that the test corpus was drawn from a
comparatively recent text sample, whereas diachronically more heterogeneous corpora
have been shown to be less amenable to such simple techniques (Gotscharek et al.,
2009b; Jurish, 2010a).

5 Conclusion

I have identified a typical precision–recall trade-off pattern exhibited by several type-wise
conflation techniques used to automatically discover extant canonical forms for historical
German text. Conservative conflators such as string identity and transliteration return
very precise results, but fail to associate many historical spelling variants with any
appropriate contemporary cognate at all. More ambitious techniques such as conflation
by phonetic form or heuristic rewrite transduction show a marked improvement in
recall, but disappointingly poor precision. To address these problems, I proposed
a method for disambiguating canonicalization hypotheses at the token level using
sentential context to optimize the path probability of candidate canonical forms given
the observed historical forms. The disambiguator uses a Hidden Markov Model whose
lexical probabilities are dynamically re-computed for every input sentence based on
the canonicalization hypotheses returned by a set of subordinated type-wise conflators,
the entire canonicalization cascade remaining within the domain of weighted rational
transductions.

The proposed disambiguation architecture was evaluated on an information retrieval
task over a gold standard corpus of manually confirmed canonicalizations of historical

36 JLCL

More Than Words

German text drawn from the Deutsches Textarchiv. Use of the token-wise disambiguator
provided a relative precision error reduction of over 94% with respect to the best recall
method, and a relative recall error reduction of over 71% with respect to the most
precise method. Overall, the proposed disambiguation method performed best at the
token level, achieving a token-wise harmonic precision-recall average F = 99.4%.

I am interested in verifying these results using larger and less homogeneous corpora
than the test corpus used here, as well as extending the techniques described here to other
languages and domains. In particular, I am interested in comparing the performance of
the manually constructed rewrite transducer used here with a linguistically motivated
language-independent conflator (Covington, 1996; Kondrak, 2000) on the one hand, and
with conflators induced from a training sample by machine learning techniques (Ristad
and Yianilos, 1998; Kempken et al., 2006; Ernst-Gerlach and Fuhr, 2006) on the other.
Future work on the disambiguator itself should involve a systematic investigation of
the effects of the various model parameters as well as more sophisticated smoothing
techniques for handling previously unseen extant types and sparse training data.

Acknowledgements

The work described here was funded by a Deutsche Forschungsgemeinschaft (DFG)
grant to the project Deutsches Textarchiv. Additionally, the author would like to thank
Henriette Ast, Jörg Didakowski, Marko Drotschmann, Alexander Geyken, Susanne
Haaf, Thomas Hanneforth, Wolfgang Seeker, Kay-Michael Würzner, and this paper’s
anonymous reviewers for their helpful feedback and comments.

References

Bahl, L. R., Jelinek, F., and Mercer, R. L. (1983). A Maximum Likelihood approach to
continuous speech recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 5(2):179–190.

Black, A. W. and Taylor, P. (1997). Festival speech synthesis system. Technical Report
HCRC/TR-83, University of Edinburgh, Centre for Speech Technology Research.

Brants, S., Dipper, S., Hansen, S., Lezius, W., and Smith, G. (2002). The TIGER treebank. In
Proceedings of the Workshop on Treebanks and Linguistic Theories, Sozopol.

Brants, T. (2000). TnT – a statistical part-of-speech tagger. In Proceedings of ANLP-2000.

Brill, E. (1992). A simple rule-based part-of-speech tagger. In Proceedings of ANLP-92, pages
152–155.

Brill, E. and Moore, R. C. (2000). An improved error model for noisy channel spelling correction.
In Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics.

Cafarella, M. and Cutting, D. (2004). Building Nutch: Open source search. Queue, 2(2):54–61.

Charniak, E., Hendrickson, C., Jacobson, N., and Perkowitz, M. (1993). Equations for part-of-
speech tagging. In Proceedings of the Eleventh National Conference on Artificial Intelligence,
pages 784–789.

Band 25 (1) – 2010 37

Jurish

Church, K. W. and Gale, W. A. (1991). Probability scoring for spelling correction. Statistics
and Computing, 1:93–103.

Covington, M. A. (1996). An algorithm to align words for historical comparison. Computational
Linguistics, 22:481–496.

Damerau, F. J. (1964). A technique for computer detection and correction of spelling errors.
Commun. ACM, 7:171–176.

DeRose, S. (1988). Grammatical category disambiguation by statistical optimization. Compu-
tational Linguistics, 14(1):31–39.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271.

Ernst-Gerlach, A. and Fuhr, N. (2006). Generating search term variants for text collections
with historic spellings. In Lalmas, M., MacFarlane, A., Rüger, S., Tombros, A., Tsikrika, T.,
and Yavlinsky, A., editors, Advances in Information Retrieval, volume 3936 of Lecture Notes
in Computer Science, pages 49–60. Springer, Berlin / Heidelberg.

Gadd, T. N. (1988). ‘Fisching fore werds’: phonetic retrieval of written text in information
systems. Program, 22(3):222–237.

Gadd, T. N. (1990). PHONIX: The algorithm. Program, 24(4):363–366.

Geyken, A. and Hanneforth, T. (2006). TAGH: A complete morphology for German based on
weighted finite state automata. In Proceedings FSMNLP 2005, pages 55–66, Berlin. Springer.

Gotscharek, A., Neumann, A., Reffle, U., Ringlstetter, C., and Schulz, K. U. (2009a). Enabling
information retrieval on historical document collections: the role of matching procedures and
special lexica. In Proceedings of The Third Workshop on Analytics for Noisy Unstructured
Text Data, AND ’09, pages 69–76, New York. ACM.

Gotscharek, A., Reffle, U., Ringlstetter, C., and Schulz, K. U. (2009b). On lexical resources for
digitization of historical documents. In Proceedings of the 9th ACM symposium on Document
Engineering, DocEng ’09, pages 193–200, New York. ACM.

Hanneforth, T. and Würzner, K.-M. (2009). Statistical language models within the algebra of
weighted rational languages. Acta Cybernetica, 19(2):313–356.

Jaynes, E. T. (1983). Brandeis lectures. In E. T. Jaynes: Papers on Probability, Statistics and
Statistical Physics, pages 40–76. D. Reidel, Dordrecht.

Jelinek, F. and Mercer, R. L. (1980). Interpolated estimation of Markov source parameters from
sparse data. In Gelsema, E. S. and Kanal, L. N., editors, Pattern Recognition in Practice,
pages 381–397. North-Holland Publishing Company, Amsterdam.

Jelinek, F. and Mercer, R. L. (1985). Probability distribution estimation from sparse data.
IBM Technical Disclosure Bulletin, 28:2591–2594.

Jurish, B. (2008). Finding canonical forms for historical German text. In Storrer, A., Geyken,
A., Siebert, A., and Würzner, K.-M., editors, Text Resources and Lexical Knowledge, pages
27–37. Mouton de Gruyter, Berlin.

38 JLCL

More Than Words

Jurish, B. (2010a). Comparing canonicalizations of historical German text. In Proceedings
of the 11th Meeting of the ACL Special Interest Group on Computational Morphology and
Phonology (SIGMORPHON), pages 72–77.

Jurish, B. (2010b). Efficient online k-best lookup in weighted finite-state cascades. In Hanneforth,
T. and Fanselow, G., editors, Language and Logos: Studies in Theoretical and Computational
Linguistics, volume 72 of Studia grammatica, pages 313–327. Akademie Verlag, Berlin.

Keller, R. E. (1978). The German Language. Faber & Faber, London.

Kempken, S. (2005). Bewertung von historischen und regionalen Schreibvarianten mit Hilfe
von Abstandsmaßen. Diploma thesis, Universität Duisburg-Essen.

Kempken, S., Luther, W., and Pilz, T. (2006). Comparison of distance measures for historical
spelling variants. In Bramer, M., editor, Artificial Intelligence in Theory and Practice, pages
295–304. Springer, Boston.

Kernighan, M. D., Church, K. W., and Gale, W. A. (1990). A spelling correction program
based on a noisy channel model. In Proceedings COLING-1990, volume 2, pages 205–210.

Kondrak, G. (2000). A new algorithm for the alignment of phonetic sequences. In Proceedings
NAACL, pages 288–295.

Kondrak, G. (2002). Algorithms for Language Reconstruction. PhD thesis, University of
Toronto.

Kukich, K. (1992). Techniques for automatically correcting words in texts. ACM Computing
Surveys, 24(4):377–439.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady, 10(1966):707–710.

Lidstone, G. J. (1920). Note on the general case of the Bayes-Laplace formula for inductive or
a priori probabilities. Transactions of the Faculty of Actuaries, 8:182–192.

Lovins, J. B. (1968). Development of a stemming algorithm. Mechanical Translation and
Computational Linguistics, 11:22–31.

Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge, MA.

Mays, E., Damerau, F. J., and Mercer, R. L. (1991). Context based spelling correction.
Information Processing & Management, 27(5):517–522.

Möhler, G., Schweitzer, A., and Breitenbücher, M. (2001). IMS German Festival manual,
version 1.2. Institute for Natural Language Processing, University of Stuttgart.

Mohri, M. (2002). Semiring frameworks and algorithms for shortest-distance problems. Journal
of Automata, Languages and Combinatorics, 7(3):321–350.

Mohri, M. (2009). Weighted automata algorithms. In Handbook of Weighted Automata,
Monographs in Theoretical Computer Science, pages 213–254. Springer, Berlin.

Band 25 (1) – 2010 39

Jurish

Pereira, F. C. N. and Riley, M. D. (1997). Speech recognition by composition of weighted finite
automata. In Roche, E. and Schabes, Y., editors, Finite-State Language Processing, pages
431–453. MIT Press, Cambridge, MA.

Philips, L. (1990). Hanging on the metaphone. Computer Language, 7(12):39.

Philips, L. (2000). The double metaphone search algorithm. C/C++ Users Journal, June 2000.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3):130–137.

Postel, H. J. (1969). Die Kölner Phonetik. Ein Verfahren zur Identifizierung von Personennamen
auf der Grundlage der Gestaltanalyse. IBM-Nachrichten, 19:925–931.

Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected applications in speech
recognition. In Proceedings of the IEEE, pages 257–286.

Rayson, P., Archer, D., and Smith, N. (2005). VARD versus Word: A comparsion of the UCREL
variant detector and modern spell checkers on English historical corpora. In Proceedings of
the Corpus Linguistics 2005 conference, Birmingham, UK.

Ristad, E. S. and Yianilos, P. N. (1998). Learning string edit distance. IEEE Transactions on
Pattern Recognition and Machine Intelligence, 20(5):522–532.

Robertson, A. M. and Willett, P. (1993). A comparison of spelling-correction methods for the
identification of word forms in historical text databases. Literary and Linguistic Computing,
8(3):143–152.

Russell, R. C. (1918). Soundex coding system. United States Patent 1,261,167.

Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In International
Conference on New Methods in Language Processing, pages 44–49, Manchester, UK.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical
Journal, 27(3):379–423.

Sokirko, A. (2003). A technical overview of DWDS/dialing concordance. Talk delivered at the
meeting Computational linguistics and intellectual technologies, Protvino, Russia.

Unicode Consortium (2011). The Unicode Standard. The Unicode Consortium, Mountain View,
CA.

van Rijsbergen, C. J. (1979). Information Retrieval. Butterworth-Heinemann, Newton, MA.

Verberne, S. (2002). Context-sensitive spell checking based on word trigram probabilities. Master
thesis, University of Nijmegen.

Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., and Carrasco, R. C. (2005).
Probabilistic finite-state machines – Part II. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27:1026–1039.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimal
decoding algorithm. IEEE Transactions on Information Theory, pages 260–269.

Zielinski, A., Simon, C., and Wittl, T. (2009). Morphisto: Service-oriented open source
morphology for German. In Mahlow, C. and Piotrowski, M., editors, State of the Art in
Computational Morphology, pages 64–75. Springer, Berlin.

40 JLCL

