
More Than Words: Using Token Context to
Improve Canonicalization of Historical German

Bryan Jurish
Berlin-Brandenburgische Akademie der Wissenschaften

jurish@bbaw.de

October 18, 2010

Abstract
Historical text presents numerous challenges for contemporary natural

language processing techniques. In particular, the absence of consistent
orthographic conventions in historical text presents difficulties for any
system requiring reference to a static lexicon indexed by orthographic form.
Canonicalization approaches seek to address these issues by associating
one or more extant “canonical cognates” with each word of the input
text and deferring application analysis to these canonical forms. Type-
wise conflation techniques treating each input word in isolation often
suffer from a pronounced precision–recall trade-off pattern: high-precision
techniques such as conservative transliteration have comparatively poor
recall, whereas high-recall techniques such as phonetic conflation tend to
be disappointingly imprecise. In this paper, we present a technique for
disambiguation of type conflation sets at the token level using a Hidden
Markov Model whose lexical probability matrix is dynamically computed
from the candidate conflations, and evaluate its performance on a manually
annotated corpus of historical German.

Contents
1 Introduction 2

2 Type-wise Conflation 3
2.1 String Identity . 3
2.2 Transliteration . 3
2.3 Phonetization . 4
2.4 Rewrite Transduction . 4

3 Token-wise Disambiguation 5
3.1 Basic Model . 5
3.2 Transition Probabilities . 6
3.3 Lexical Probabilities . 6
3.4 Runtime Disambiguation . 7

1

Jurish More Than Words

4 Evaluation 8
4.1 Test Corpus . 8
4.2 Evaluation Measures . 8
4.3 Results . 9

5 Conclusion 10

1 Introduction
Historical text presents numerous challenges for contemporary natural language
processing techniques. In particular, the absence of consistent orthographic
conventions in historical text presents difficulties for any system requiring ref-
erence to a fixed lexicon accessed by orthographic form, such as document
indexing systems [Sokirko, 2003, Cafarella and Cutting, 2004], part-of-speech
taggers [DeRose, 1988, Brill, 1992, Schmid, 1994], simple word stemmers [Lovins,
1968, Porter, 1980], or more sophisticated morphological analyzers [Geyken and
Hanneforth, 2006, Zielinski et al., 2009].

Traditional approaches to the problems arising from an attempt to incorporate
historical text into such a system rely on the use of additional specialized
(often application-specific) lexical resources to explicitly encode known historical
variants. Such specialized lexica are not only costly and time-consuming to
create, but also necessarily incomplete in the case of a morphologically productive
language like German, since a simple finite lexicon cannot account for highly
productive morphological processes such as nominal composition.

To facilitate the extension of synchronically-oriented natural language pro-
cessing techniques to historical text while minimizing the need for specialized
lexical resources, we may first attempt an automatic canonicalization of the
input text. Canonicalization approaches [Jurish, 2008, 2010a] treat orthographic
variation phenomena in historical text as instances of an error-correction problem,
seeking to map each (unknown) word of the input text to one or more extant
canonical cognates: synchronically active types which preserve both the root
and morphosyntactic features of the associated historical form(s). To the extent
that the canonicalization was successful, application-specific processing can then
proceed normally using the returned canonical forms as input, without any need
for additional modifications to the application lexicon.

We distinguish between type-wise canonicalization techniques which process
each input word independently and token-wise techniques which make use of the
context in which a given instance of a word occurs. In this paper, we present a
token-wise canonicalization method which functions as a disambiguator for sets of
hypothesized canonical forms as returned by one or more subordinated type-wise
techniques. Section 2 provides a brief review of the type-wise canonicalizers used
to generate hypotheses, while Section 3 is dedicated to the formal characterization
of the disambiguator itself. Section 4 contains a quantitative evaluation of the
disambiguator’s performance on an information retrieval task over a manually
annotated corpus of historical German. Finally, Section 5 provides a brief
summary and conclusion.

2

Jurish More Than Words

2 Type-wise Conflation
Type-wise canonicalization techniques are those which process each input word in
isolation, independently of its surrounding context. Such a type-wise treatment
allows efficient processing of large documents and corpora (since each input
type need only be processed once), but disregards potentially useful context
information. Formally, a type-wise canonicalization method r is fully specified
by a characteristic conflation relation ∼r, a binary relation on the set A∗ of all
strings over the finite grapheme alphabet A. Prototypically, ∼r will be a true
equivalence relation, inducing a partitioning of the set A∗ of possible word types
into equivalence classes or “conflation sets” [w]r = {v ∈ A∗ : v ∼R w}. In the
sequel, we will will use the term “conflation” as synonymous with “type-wise
canonicalization”, and “conflator” to refer to a specific type-wise canonicalization
method.

2.1 String Identity
The simplest of all possible conflators is simple identity of surface strings. The
conflation relation ∼id is in this case nothing more or less than the string identity
relation = itself:

w ∼id v :⇔ w = v (1)

While string identity is the easiest conflator to implement (no additional program-
ming effort or resources are required) and provides a high degree of precision, it
cannot account for any graphematic variation at all, resulting in very poor recall.
Nonetheless, its inclusion as a conflator ensures that the the set of candidate
hypotheses [w] for a given input word w is non-empty,1 and it provides a baseline
with respect to which the relative utility of more sophisticated conflators can be
evaluated.

2.2 Transliteration
A slightly less naïve family of conflation methods are those which employ a
simple deterministic transliteration function to replace input characters which
do not occur in contemporary orthography with extant equivalents. Formally, a
transliteration conflator is defined in terms of a string transliteration function
xlit : A∗ → Ã∗, where A is as before a “universal” grapheme alphabet (e.g. the
set of all Unicode characters) and Ã ⊂ A is that subset of the universal alphabet
allowed by contemporary orthographic conventions:

w ∼xlit v :⇔ xlit(w) = xlit(v) (2)

In the case of historical German, deterministic transliteration is especially
useful for its ability to account for typographical phenomena, e.g. by mapping
‘ſ’ (long ‘s’, as commonly appeared in texts typeset in fraktur) to a conventional
round ‘s’, and mapping superscript ‘e’ to the conventional umlaut diacritic ‘¨’, as
in the transliteration Abſt e

ande 7→ Abstände (“distances”). For the current work,
we used a conservative transliteration function based on the Text::Unidecode
Perl module2 Although it rivals raw string identity in terms of its precision, such

1[w]id ⊆ [w] implies w ∈ [w], and thus [w] 6= ∅.
2http://search.cpan.org/˜sburke/Text-Unidecode-0.04/

3

Jurish More Than Words

a conservative transliteration suffers from its inability to account for graphe-
matic variation phenomena involving extant characters such as th/t and ey/ei
alternations common in historical German.

2.3 Phonetization
A more powerful family of conflation methods is based on the dual intuitions that
graphemic forms in historical text were constructed to reflect phonetic forms, and
that the phonetic system of the target language is diachronically more stable than
its graphematic system. Phonetic conflators map each (historical or extant) word
w ∈ A∗ to a unique phonetic form pho(w) by means of a computable function
pho : A∗ → P∗,3 conflating those strings which share a common phonetic form:

w ∼pho v :⇔ pho(w) = pho(v) (3)

Note that [w]pho may be infinite, if for example pho(·) maps any substring of
one or more instances of a single character (e.g. ‘a’) to a single phon (e.g. /a/).
It is useful in such cases to consider the restriction of the conflation set [w]pho
to a finite set of target strings S ⊂ A∗. We add the superscript “�S” to the
equivalence class to indicate such a restriction, [w]�Spho = [w]pho ∩ S.

The phonetic conversion module used here was adapted from the phone-
tization rule-set distributed with the IMS German Festival package [Möhler
et al., 2001], a German language module for the Festival text-to-speech system
[Black and Taylor, 1997].4 Phonetic conflation offers a substantial improvement
in recall over conservative methods such as transliteration or string identity.
Unfortunately, these improvements often come at the expense of precision.

2.4 Rewrite Transduction
Despite its comparatively high recall, the phonetic conflator fails to relate
unknown historical forms with any extant equivalent whenever the graphematic
variation leads to non-identity of the respective phonetic forms, suggesting that
recall might be further improved by relaxing the strict identity criterion on the
right hand side of Equation (3). Moreover, a fine-grained and appropriately
parameterized conflator should be less susceptible to precision errors than an
“all-or-nothing” (phonetic) identity condition. A technique which fulfills both
of the above desiderata is rewrite transduction, which can be understood as a
generalization of the well-known string edit distance [Levenshtein, 1966].

Formally, let Lex ⊆ A∗ be the (possibly infinite) lexicon of all extant forms,
and let ∆rw be a weighted finite-state transducer over a bounded semiring K
which models (potential) diachronic change likelihood as a weighted rational
relation. Then define for every input type w ∈ A∗ the “best” extant equivalent
bestrw(w) as the unique extant type v ∈ Lex with minimal edit-distance to the
input word:

bestrw(w) = arg min
v∈Lex

J∆rwK(w, v) (4)

3P is a finite phonetic alphabet.
4In the absence of a language-specific phonetization function, a generic phonetically moti-

vated digest algorithm such as soundex [Russell and Odell, 1918, Knuth, 1998], the Kölner
Phonetik [Postel, 1969], or Metaphone [Philips, 1990, 2000] may be employed instead.

4

Jurish More Than Words

Ideally, the image of a word w under bestrw will itself be the canonical cognate
sought, leading to conflation of all strings which share a common image under
bestrw:

w ∼rw v :⇔ bestrw(w) = bestrw(v) (5)
For the current experiments, we used the heuristic rewrite transducer de-

scribed in Jurish [2010a], compiled from 306 manually constructed SPE-style
two-level rules, while the target lexicon Lex was extracted from the tagh mor-
phology transducer [Geyken and Hanneforth, 2006]. Best-path lookup was
performed using a specialized variant of the well-known Dĳkstra algorithm [Dĳk-
stra, 1959] as described in Jurish [2010b]. Although this rewrite cascade does
indeed improve both precision and recall with respect to the phonetic conflator,
these improvements are of comparatively small magnitude, precision in particular
remaining well below the level of conservative conflators such as naïve string
identity or transliteration.

3 Token-wise Disambiguation
In an effort to recover some degree of the precision offered by conservative
conflation techniques such as transliteration while still benefiting from the
flexibility and improved recall provided by more ambitious techniques such
as phonetization or rewrite transduction, we have developed a method for
disambiguating type-wise conflation sets which operates on the token level,
using sentential context to determine a unique “best” canonical form for each
input token. Specifically, the disambiguator employs a Hidden Markov Model
(HMM) whose lexical probability matrix is dynamically re-computed for each
input sentence from the conflation sets returned by one or more subordinated
type-wise conflators, and whose transition probabilities are given by a static
word n-gram model of the target language, i.e. present-day German adhering to
current orthographic conventions.

3.1 Basic Model
Formally, let W ⊂ Ã∗ be a finite set of known extant words, let u 6∈ W be a
designated symbol representing an unknown word, let S = 〈w1, . . . , wnS 〉 be an
input sentence of nS (historical) words with wi ∈ A∗ for 1 ≤ i ≤ nS , and let
R = {r1, . . . , rnR} be a finite set of (opaque) type-wise conflators. Then, the
disambiguator HMM is defined in the usual way [Rabiner, 1989, Charniak et al.,
1993, Manning and Schütze, 1999] as the 5-tuple D = 〈Q,OS ,Π, A,BS〉, where:

1. Q = (W ∪ {u})×R is a finite set of model states, where each state q ∈ Q
is pair 〈w̃q, rq〉 composed of an extant word form w̃q and a conflator rq;

2. OS = rng(S) =
⋃nS
i=1{wi} is the set of observations for the input sentence

S;

3. Π : Q → [0, 1] : q 7→ p(Q1 = q) is a static probability distribution over Q
representing the model’s initial state probabilities;

4. A : Qk → [0, 1] : 〈q1, . . . , qk〉 7→ p(Qi = qk|Qi−k+1 = q1, . . . , Qi−1 = qk−1)
is a static conditional probability distribution over Q k-grams representing
the model’s state transition probabilities; and

5

Jurish More Than Words

5. BS : Q × OS → [0, 1] : 〈q, o〉 7→ p(O = o|Q = q) is a dynamic probabil-
ity distribution over observations conditioned on states representing the
model’s lexical probabilities.

3.2 Transition Probabilities
The finite target lexiconW can easily be extracted from a corpus of contemporary
text. For estimating the static distributions Π and A, we first make the following
assumptions:

p(Q = 〈w̃q, rq〉) = p(W = w̃q)p(R = rq) (6)

p(R = r) = 1
nR

(7)

Equation 6 asserts the independence of extant forms and conflators, while Equa-
tion 7 assumes a uniform distribution over conflators. Given these assumptions,
the static state distributions Π and A can be estimated as:

Π(q) :≈ p (W1 = w̃q) /nR (8)
A(q1, . . . , qk) :≈ p

(
Wi = w̃qk |W

i−1
i−k+1 = w̃q1 . . . w̃qk−1

)
/nR (9)

Equations (8) and (9) are nothing more or less than a word k-gram model over
extant forms, scaled by the constant 1

nR
. We can therefore use standard maximum

likelihood techniques to estimate Π and A from a corpus of contemporary text
[Bahl et al., 1983, Manning and Schütze, 1999].

For the current experiments, we trained a word trigram model (k = 3) on the
tiger corpus of contemporary German [Brants et al., 2002]. Probabilities for
the “unknown” form u were computed using the simple smoothing technique of
assigning u a pseudo-frequency of 1

2 [Lidstone, 1920, Manning and Schütze, 1999].
To account for unseen trigrams, the resulting trigram model was smoothed by
linear interpolation of uni-, bi-, and trigrams [Jelinek and Mercer, 1980, 1985],
using the method described by Brants [2000] to estimate the interpolation
coefficients.

3.3 Lexical Probabilities
In the absence of a representative corpus of conflator-specific manually annotated
training data, we cannot use maximum likelihood techniques to estimate the
model’s lexical probabilities BS . Instead, lexical probabilities are instantiated as
a Maxwell-Boltzmann distribution:

B
(
〈w̃, r〉, w

)
:≈ bβdr(w,w̃)∑

r′∈R
∑
w̃′∈[w]r′

bβdr′ (w,w̃′)
(10)

Here, b, β ∈ R are free model parameters with β < 0 < b, and for a conflator
r ∈ R, the function dr : A∗ ×W → R+ is a pseudo-metric used to estimate the
reliability of the conflator’s association of an input word w with the extant form
w̃

It should be explicitly noted that the denominator of the right-hand side
of Equation (10) is a sum over all model states (canonicalization hypotheses)
〈w̃′, r′〉 actually associated with the observation argument w by the type-wise

6

Jurish More Than Words

conflation stage, and not a sum over observations w′ associable with the state
argument 〈w̃, r〉. This latter sum (if it could be computed) would adhere
to the traditional form

(
sim(o, q)/

∑
o′ sim(o′, q)

)
for estimating a probability

distribution p(O|Q) over observations conditioned on model states such as the
HMM lexical probability matrix BS is defined to represent; whereas the estimator
in Equation (10) is of the form

(
sim(o, q)/

∑
q′ sim(o, q′)

)
, which corresponds

more closely to a distribution p(Q|O) over states conditioned on observations.5
From a practical standpoint, it should be clear that Equation (10) is much

more efficient to compute than an estimator summing globally over potential
observations, since all the data needed to compute Equation (10) are provided by
the type-wise preprocessing of the input sentence S itself, whereas a theoretically
pure global estimator would require a whole arsenal of inverse conflators as well
as a mechanism for restricting their outputs to some tractable set of admissable
historical forms, and hence would be of little practical use. From a formal
standpoint, we believe that our estimator as used in the run-time disambiguator
can be shown to be equivalent to a global estimator, provided that the conflator
pseudo-metrics dr are symmetric and the languages of both historical and extant
forms are uniformly dense, but a proof of this conjecture is beyond the scope of
the current work.

It was noted above in Section 2.3 that the for the phonetic conflator in
particular, the equivalence class [w]pho = {v ∈ A∗ : w ∼pho v} may not be finite.
In order to ensure the computational tractability of Equation (10) therefore, the
phonetic conflations considered were implicitly restricted to the finite set W of
known extant forms used to define the model’s states, [w]�Wpho. Transliterations and
rewrite targets which were not also known extant forms were implicitly mapped
to the designated symbol u for purposes of estimating transition probabilities
for previously unseen extant word types.

For the current experiments, we used the following model parameters:
b = 2
β = −1

dxlit(w, w̃) = 2/|w| if w̃ = xlit(w)
dpho(w, w̃) = 1/|w| if w̃ ∈ [w]�Wpho
drw(w, w̃) = J∆rwK(w, w̃)/|w| if w̃ ∈ [w]rw

In all other cases, dr(w, w̃) is undefined. Note that all conflator distance functions
are scaled by inverse input word length 1

|w| . Defining distance functions in terms
of (inverse) word length in this manner captures the intuition that a conflator
is less likely to discover a false positive conflation for a longer input word than
for a short one; natural language lexica tending to be maximally dense for short
(usually closed-class) words. The transliteration and phonetic conflators are
constants given input word length, whereas the rewrite conflator makes use of
the cost J∆rwK(w, w̃) assigned to the conflation pair by the rewrite FST itself.

3.4 Runtime Disambiguation
Having defined the disambiguator model, we can use it to determine a unique
“best” canonical form for each input sentence S by applying the well-known

5See the discussion surrounding Equation 20 in Charniak et al. [1993] for a more detailed
look at these two sorts of lexical probability estimator and their effects on HMM part-of-speech
taggers.

7

Jurish More Than Words

Viterbi algorithm [Viterbi, 1967]. Formally, the Viterbi algorithm computes the
state path with maximal probability given the observed sentence:

Viterbi(S,D) = ~Q = arg max
〈q1,...,qnS 〉∈Q

nS

p(q1, . . . , qnS |S,D) (11)

Finally, extracting the disambiguated canonical forms from the state sequence
~Q returned by the Viterbi algorithm is a trivial matter of projecting the extant
form components of the HMM state structures:

Disambig(S,D) = 〈w̃~Q(1), . . . , w̃~Q(nS)〉 (12)

4 Evaluation
4.1 Test Corpus
The conflation and disambiguation techniques described above were tested
on a manually annotated corpus of historical German. The test corpus was
comprised of the full body text from 13 volumes published between 1780 and
1880, and contained 152,776 tokens of 17,417 distinct types in 9,079 sentences,
discounting non-alphabetic types such as punctuation. To assign an extant
canonical equivalent to each token of the test corpus, the text of each volume was
automatically aligned token-wise with a contemporary edition of the same volume.
Automatically discovered non-identity alignment pair types were presented to a
human annotator for confirmation. In a second annotation pass, all tokens lacking
an identical or manually confirmed alignment target were inspected in context
and manually assigned a canonical form. Whenever they were presented to a user,
proper names and extinct lexemes were treated as their own canonical forms. In
all other cases, equivalence was determined by direct etymological relation of
the root in addition to matching morphosyntactic features. Problematic tokens
were marked as such and subjected to expert review. Marginalia, front and back
matter, speaker and stage directions, and tokenization errors were excluded from
the final evaluation corpus.

4.2 Evaluation Measures
The canonicalization methods from Sections 2 and 3 were evaluated using the
gold-standard test corpus to simulate a document indexing and query scenario.
Formally, let C = {c1, . . . , cnC} be a finite set of canonicalizers, and let G =
〈S1, . . . , SnG〉 represent the sentences of the test corpus, where each sentence Si =
〈gi;1, . . . , gi;nSi 〉 is a string of token-tuples gi;j = 〈wi;j , w̃i;j , [wi;j]c1 , . . . , [wi;j]cnC 〉,
1 ≤ i ≤ nG and 1 ≤ j ≤ nSi . Here, wi;j represents the literal token text as
appearing in the historical corpus, w̃i;j is its gold-standard canonical cognate,
and [wi;j]ck represents the set of canonical form(s) assigned to the token by the
canonicalizer ck. Let Q =

⋃nG
i=1
⋃nSi
j=1{w̃i;j} be the set of all canonical cognates

represented in the corpus, and define for each canonicalizer c ∈ C and query
string q ∈ Q the sets relevant(q), retrievedc(q) ⊆ N2 of relevant and retrieved
corpus tokens as:

relevant(q) = {〈i, j〉 ∈ N2 : q = w̃i;j} (13)
retrievedc(q) = {〈i, j〉 ∈ N2 : q ∈ [wi;j]c} (14)

8

Jurish More Than Words

% Types % Tokens
c prtyp rctyp Ftyp prtok rctok Ftok

id 99.0 59.2 74.1 99.8 79.3 88.4
xlit 99.1 89.5 94.1 99.8 96.8 98.3
pho 97.1 96.1 96.6 91.4 99.2 95.1
rw 97.6 96.5 97.0 94.3 99.3 96.7

hmm 98.6 95.3 96.9 99.7 99.1 99.4

Table 1: Evaluation data for various canonicalization techniques

Token-wise precision and recall for the canonicalizer c can then be defined as:

prtok =

∣∣∣⋃q∈Q retrievedc(q) ∩ relevant(q)
∣∣∣∣∣∣⋃q∈Q retrievedc(q)

∣∣∣ (15)

rctok =

∣∣∣⋃q∈Q retrievedR(q) ∩ relevant(q)
∣∣∣∣∣∣⋃q∈Q relevant(q)

∣∣∣ (16)

Type-wise measures are defined analogously, by mapping the token index sets
of Equations (13) and (14) to corpus types before applying Equations (15) and
(16). We use the unweighted harmonic precision-recall average F [van Rĳsbergen,
1979] as a composite measure for both type- and token-wise evaluation modes:

F(pr, rc) = 2 · pr · rc
pr + rc

(17)

4.3 Results
Qualitative results for the canonicalization techniques described in Sections 2
and 3 with respect to the test corpus are given in Table 1. Immediately apparent
from the data is the typical precision–recall trade-off pattern discussed above:
conservative conflators such as string identity (id) and transliteration (xlit) have
near-perfect precision (≥ 99% both type- and token-wise), but relatively poor
recall. On the other hand, ambitious conflators such as phonetic identity (pho)
or the heuristic rewrite transducer (rw) reduce type-wise recall errors by over
66% and token-wise recall errors by over 75%, with respect to transliteration,
but these recall gains come at the expense of precision.

As hoped, the HMM disambiguator (hmm) presented in Section 3 does indeed
recover a large degree of the precision lost by the ambitious type-wise conflators,
achieving a reduction of over 41% in type-wise precision errors and over 94% in
token-wise precision errors with respect to the heuristic rewrite conflator. While
some additional recall errors are made by the HMM, there are comparatively
few of these, so that the harmonic average F falls by a mere 3% with respect
to the highest-recall method (rw). Indeed, the token-wise composite measure
F is substantially higher for the HMM disambiguator (99.4%, versus 96.7%
for the rewrite method), outperforming its closest competitor — deterministic
transliteration (xlit) — by over 64%.

9

Jurish More Than Words

The most surprising aspect of these results is the recall performance of the
conservative transliterator xlit with rctok = 96.8%. While such performance
combined with the ease of implementation and computational efficiency of the
transliteration method makes it very attractive at first glance, note that the
test corpus was drawn from a comparatively recent text sample, and that a
diachronically more heterogeneous corpus such as that described in Jurish [2010a]
is likely to be less amenable to such simple techniques.

5 Conclusion
We have identified a typical precision–recall trade-off pattern exhibited by several
type-wise conflation techniques used to automatically discover extant canonical
forms for historical German text. Conservative conflators such as string identity
and transliteration return very precise results, but suffer from comparatively
poor recall. More ambitious techniques such as conflation by phonetic form
or heuristic rewrite transduction show a marked improvement in recall, but
disappointingly poor precision. To address these problems, we proposed a
method for disambiguating type conflation sets at the token level using sentential
context to optimize the path probability of canonical forms conditioned on
observed historical forms. The disambiguator uses a Hidden Markov Model
whose lexical probabilities are dynamically re-computed for every input sentence
based on the conflation hypotheses returned by a set of subordinated type-wise
conflators.

The proposed disambiguation architecture was evaluated on an information
retrieval task over a gold standard corpus of manually confirmed canonicalizations
of historical German text. Use of the token-wise disambiguator provided a
precision error reduction of over 94% with respect to the best recall method, and
a recall error reduction of over 71% with respect to the most precise method.
Overall, the proposed disambiguation method performed best at the token level,
achieving a token-wise F of 99.4%.

We are interested in verifying our results using larger and less homogeneous
corpora than the test corpus used here, as well as extending the techniques
described here to other languages and domains. In future work, we wish to
implement and test a language-independent type-wise conflator such as that
described by Kondrak [2000], and to systematically investigate the effects of
the various disambiguator parameters as well as more sophisticated smoothing
techniques for handling previously unseen extant types and sparse training data.

References
L. R. Bahl, F. Jelinek, and R. L. Mercer. A Maximum Likelihood approach to

continuous speech recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Pami-5(2):179–190, 1983.

A. W. Black and P. Taylor. Festival speech synthesis system. Technical Report
HCRC/TR-83, University of Edinburgh, Centre for Speech Technology Research,
1997. URL http://www.cstr.ed.ac.uk/projects/festival.

S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith. The TIGER treebank. In
Proceedings of the Workshop on Treebanks and Linguistic Theories, Sozopol, 2002.

10

Jurish More Than Words

T. Brants. TnT – a statistical part-of-speech tagger. In Proceedings of ANLP-2000,
2000.

E. Brill. A simple rule-based part-of-speech tagger. In Proceedings of ANLP-92, 3rd
Conference on Applied Natural Language Processing, pages 152–155, Trento, Italy,
1992.

M. Cafarella and D. Cutting. Building Nutch: Open source search. Queue, 2(2):54–61,
2004. ISSN 1542-7730. doi: http://doi.acm.org/10.1145/988392.988408.

E. Charniak, C. Hendrickson, N. Jacobson, and M. Perkowitz. Equations for part-of-
speech tagging. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 784–789, 1993.

S. DeRose. Grammatical category disambiguation by statistical optimization. Compu-
tational Linguistics, 14(1):31–39, 1988.

E. W. Dĳkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

A. Geyken and T. Hanneforth. TAGH: A complete morphology for German based on
weighted finite state automata. In Proceedings FSMNLP 2005, pages 55–66, Berlin,
2006. Springer. doi: http://dx.doi.org/10.1007/11780885_7.

F. Jelinek and R. L. Mercer. Interpolated estimation of Markov source parameters
from sparse data. In E. S. Gelsema and L. N. Kanal, editors, Pattern Recognition in
Practice, pages 381–397. North-Holland Publishing Company, Amsterdam, 1980.

F. Jelinek and R. L. Mercer. Probability distribution estimation from sparse data.
IBM Technical Disclosure Bulletin, 28:2591–2594, 1985.

B. Jurish. Finding canonical forms for historical German text. In A. Storrer, A. Geyken,
A. Siebert, and K.-M. Würzner, editors, Text Resources and Lexical Knowledge,
pages 27–37. Mouton de Gruyter, Berlin, 2008. ISBN 978-3-11-020735-4.

B. Jurish. Comparing canonicalizations of historical German text. In Proceedings of the
11th Meeting of the ACL Special Interest Group on Computational Morphology and
Phonology, pages 72–77, Uppsala, Sweden, July 2010a. URL http://www.aclweb.
org/anthology/W10-2209.

B. Jurish. Efficient online k-best lookup in weighted finite-state cascades. In T. Han-
neforth and G. Fanselow, editors, Language and Logos: Studies in Theoretical and
Computational Linguistics, volume 72 of Studia grammatica. Akademie Verlag, Berlin,
2010b. ISBN 978-3-05-004931-1.

D. Knuth. The Art of Computer Programming, Volume 3: Sorting And Searching.
Second Edition. Addison-Wesley, Reading, MA, 1998. ISBN 0-201-89685-0.

G. Kondrak. A new algorithm for the alignment of phonetic sequences. In Proceedings
NAACL, pages 288–295, 2000.

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady, 10(1966):707–710, 1966.

G. J. Lidstone. Note on the general case of the Bayes-Laplace formula for inductive or
a priori probabilities. Transactions of the Faculty of Actuaries, 8:182–192, 1920.

J. B. Lovins. Development of a stemming algorithm. Mechanical Translation and
Computational Linguistics, 11:22–31, 1968.

11

Jurish More Than Words

C. D. Manning and H. Schütze. Foundations of statistical natural language processing.
MIT Press, Cambridge, MA, 1999.

G. Möhler, A. Schweitzer, and M. Breitenbücher. IMS German Festival manual, version
1.2. Institute for Natural Language Processing, University of Stuttgart, 2001. URL
http://www.ims.uni-stuttgart.de/phonetik/synthesis.

L. Philips. Hanging on the metaphone. Computer Language, 7(12):39, December 1990.

L. Philips. The double metaphone search algorithm. C/C++ Users Journal, June 2000,
June 2000.

M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

H. J. Postel. Die Kölner Phonetik. Ein Verfahren zur Identifizierung von Personennamen
auf der Grundlage der Gestaltanalyse. IBM-Nachrichten, 19:925–931, 1969.

L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech
recognition. In Proceedings of the IEEE, pages 257–286, 1989.

R. C. Russell and M. K. Odell. Soundex phonetic coding system. US Patent 1,261,167,
1918.

H. Schmid. Probabilistic part-of-speech tagging using decision trees. In International
Conference on New Methods in Language Processing, pages 44–49, Manchester, UK,
1994.

A. Sokirko. A technical overview of DWDS/dialing concordance. Talk delivered at the
meeting Computational linguistics and intellectual technologies, Protvino, Russia,
2003. URL http://www.aot.ru/docs/OverviewOfConcordance.htm.

C. J. van Rĳsbergen. Information Retrieval. Butterworth-Heinemann, Newton, MA,
1979. ISBN 0408709294.

A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimal
decoding algorithm. IEEE Transactions on Information Theory, pages 260–269,
April 1967.

A. Zielinski, C. Simon, and T. Wittl. Morphisto: Service-oriented open source mor-
phology for German. In C. Mahlow and M. Piotrowski, editors, State of the Art
in Computational Morphology, volume 41 of Communications in Computer and
Information Science, pages 64–75. Springer, Berlin, 2009. ISBN 978-3-642-04131-0.
URL http://dx.doi.org/10.1007/978-3-642-04131-0_5.

12

