Music as a Formal Language Finite-State Automata and Pd

Bryan Jurish

moocow@ling.uni-potsdam.de

Universität Potsdam, Institut für Linguistik,

Potsdam, Germany

Overview

- The Big Idea: Music as a Formal Language
- A Brief Tour of Formal Language Theory
- Finite-State Machines
- The pd-gfsm Pd Externals
- Future Directions
- Concluding Remarks

The Big Idea

Music as a formal language

- Syntactic characterization
- Generic musical structure

Formal languages for music

- Expressive power
- Practical requirements
- Applications

Open Questions

- Cognitive plausibility ?
- Musical language \sim spoken language ?

Formal Language Theory

Alphabets and Strings

- Finite (terminal) Alphabet $\Sigma = \{a_1, \ldots, a_n\}$
- Free Monoid $\langle \Sigma^*, \circ \rangle$ (finite strings over Σ)

Formal Languages

Formal Language $L \subseteq \Sigma^*$

Grammars and Automata

- Grammar $G = \langle V, \Sigma, P, S \rangle$ generates language $L = \mathcal{L}(G)$ by production rules $\alpha \to \beta \in P$
- Automaton $M = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$ recognizes language $L = \mathcal{L}(M)$ by transition rules $\in \delta$

Chomsky Inclusion Hierarchy

Turing Machines

Linear Bounded Turing Machines

Pushdown Automata

Finite-State Automata **Type-0** $\{\langle w, M \rangle \mid w \in \mathcal{L}(M)\}$

Type-1 $\{ww \mid w \in \Sigma^*\}$

Type-2 $\{a^nb^n \mid n \in \mathbb{N}\}$

Type-3
$$\{a^n \mid n \in \mathbb{N}\}$$

Rule Grammars

Context-Sensitive Grammars

> Context-Free Grammars

Regular Grammars

Musical Structure

Non-Context-Free

 \Rightarrow Musical Languages $\mathcal{ML} \supseteq \mathcal{CFL}$

Context-Sensitive Languages

Practical Considerations

Improvisation Property

- Given a valid prefix $v \in \Sigma^*$ of a word $vw \in L$, it is decidable in constant time for each $a \in \Sigma$ whether there is a $w' \in \Sigma^*$ such that $vaw' \in L$.
- Amounts to incremental computability.
- Flexibility
 - Minimize requirements on what might constitute "musical structure".

Mutability

Enable efficient runtime change of language structure.

Finite-State Machines

Finite-State Acceptor (FSA) $A = \langle Q, \Sigma, \delta, q_0, F \rangle$

- \checkmark Q a finite set of states,
- Σ a finite terminal alphabet,
- $\delta: Q \times \Sigma \to 2^Q$ a finite transition function,
- q_0 a distinguished initial state, and
- $F \subseteq Q$ a set of final states.
- \Rightarrow Rooted directed graph with edge labels in $\Sigma.$

Finite-State Transducer (FST) $M = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$

• Basically an FSA with edge labels in $\Sigma \times \Gamma$.

Weighted FSMs

Extend δ by marking each arc with a weight $w \in \mathbb{R}$.

Finite State Machines: Example

A Recognizer for Simple Cadences

Finite State Machines: Applications

Markov Chains

- \blacksquare = weighted FSAs
- incremental stochastic sequence generation

Hidden Markov Models

- \blacksquare = weighted FSTs
- runtime quantization and classification

Rational Transformations

control message rewrite rules

Regular Expressions

user-interface specifications

The pd-gfsm Library

gfsm_alphabet NAME

- Maps Pd atoms ↔ integer "labels"
- AT&T text format I/O

gfsm_automaton NAME

- Weighted finite-state transducer
- AT&T text and native binary format I/O
- Suitable for large machines (\geq 3 million states)

gfsm_state NAME STATE_ID

Holds current state for incremental processing

gfsm_markov NAME

Trainable Markov chain patch

gfsm_markov Example 1

Simple 12-Bar Blues

gfsm_markov Example 2

12-Bar Blues with upper duration labels

gfsm_markov Example 3

12-Bar Blues with complex state labels

Future Directions

FSM Operations

- Algebra: compose, intersect, remove- ε
- Continuous FSMs
- Threading

Compilers & Interfaces

- Regular Expressions
- 2-Level Rules
- Graphical Editor

Stochastic Modelling

- Viterbi Algorithm
- Baum-Welch Re-estimation

Concluding Remarks

Expressive Power

- $\textbf{P} \ \mathcal{RL} \subsetneq \mathcal{CFL} \subsetneq \mathcal{ML} \subseteq \mathcal{MCSL}$
- $\mathcal{PDL} = \mathcal{TL}$

Practical Considerations

- Improvisability
- Flexibility
- Mutability

$\label{eq:entropy} \textbf{Embedded Implementation} \; \texttt{pd-gfsm}$

- FSMs (weak) in Pd (strong)
- Best of both worlds

The End

Mild Context-Sensitivity

For every mildly context-sensitive $L \in \mathcal{MCSL}$:

Contstant Growth

- There is a fixed upper bound $j \in \mathbb{N}$ on the minimum length difference between two words of L.
- Intuition: $j \sim$ length of a "measure".

Polynomial Parsing Time

- $w \in L$ is decidable in $O(|w|^k)$ time for some $k \in \mathbb{N}$.
- Too weak? \Rightarrow *Improvisation property*

Bounded Cross-Serial Dependencies

- There is an upper bound $m \in \mathbb{N}$ on the number of cross-serial structural dependencies exhibited by words of L.
- Too strong? \Rightarrow Theme and Variation