
Grimm/Taxi HOWTO

Bryan Jurish
Berlin-Brandenburg Academy of Sciences · Jägerstraße 22/23 · 10117 Berlin · Germany

moocow@bbaw.de

May 7, 2009

Contents

1 Introduction 2

2 Sources 4

2.1 Directory Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 The Build Subsystem 5

3.1 From SGML to Raw XML . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 From Raw XML to Taxi XML . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Additional Build Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 The Indexing Subsystem 13

4.1 Defining a New Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Loading Corpus Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Analyzing Corpus Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Importing and Exporting Indices . . . . . . . . . . . . . . . . . . . . . . . 21

5 The Runtime Subsystem 22

5.1 Taxi Query Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Direct Index Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Server-Based Index Access . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1

mailto:moocow@bbaw.de


Jurish Grimm/Taxi HOWTO

List of Figures

1 Grimm/Taxi System Architecture . . . . . . . . . . . . . . . . . . . . . . . 3

2 Grimm/Taxi Server Architecture . . . . . . . . . . . . . . . . . . . . . . . 25

List of Tables

1 Grimm/Taxi CVS directory layout . . . . . . . . . . . . . . . . . . . . . . 6

2 Common variables used by the build subsystem . . . . . . . . . . . . . . . 7

3 Static DTD variables used by the build subsystem . . . . . . . . . . . . . . 7

4 Selected SGML→XML targets in grimm/xml . . . . . . . . . . . . . . . . . 9

5 Selected Taxi-XML targets in grimm/xml . . . . . . . . . . . . . . . . . . . 10

6 Phonetic analysis variables used by the build subsystem . . . . . . . . . . . 12

7 Morphological analysis variables used by the build subsystem . . . . . . . . 12

8 Selected additional XML targets in grimm/xml . . . . . . . . . . . . . . . . 13

1 Introduction

This document attempts to provide a general overview of the Grimm/Taxi quotation evi-
dence indexing system prototype as implemented and running at the Berlin-Brandenburg
Academy of Sciences. The chief purpose of the Grimm/Taxi system is to a provide flexible
and efficient application program interface (API) for fine-grained queries over a corpus
of historical German text extracted from quotation evidence ocurring in the Deutsches

Wörterburch (DWB) by Jacob and Wilhelm Grimm.1

The Grimm/Taxi quotation evidence indexing system is (as its name suggests) a system
for the construction, analysis, and efficient retrieval from a corpus of quotation evidence
drawn from a dictionary source. A dataflow diagram for the major components of the
build and runtime system is given in Figure 1.

As shown in Figure 1, the Grimm/Taxi system is conceptually divided into three separate
subsystems. The build subsystem is responsible for converting raw SGML DWB source
documents to Taxi-XML format, the indexing subsystem is responsible for the adminis-
tration of a MySQL relational database containing all relevant corpus information, and
the runtime subsystem is responsible for parsing of user queries, and for the retrieval and

1Electronic sources for the Deutsches Wörterbuch in raw SGML format were kindly provided by the
University of Trier.

2



Jurish Grimm/Taxi HOWTO

perl, libxml, libxslt

sgml2xml, perl, make

taxi−admin.perl

Remote User

Raw SGML Entity Table LTS FST TAGH FST

Command−Line User

Analyses
Morphological

taxi−query.perl taxi−server.perl

Terminal I/O
(XML, HTML, Text, ...)

HTTP

Build
Subsystem

Subsystem
Indexing

MySQL DB

Raw XML

TAXI XML

}TAXI Perl API, SQL

Phonetic Analysis

Runtime Subsystem

ISO−8859−1
UTF−8,

Figure 1: Grimm/Taxi System Architecture

3



Jurish Grimm/Taxi HOWTO

formatting of corpus data in response to user queries. Both the indexing and runtime
subsystems consist of an abstract layer (the Taxi perl API) which supports indexing and
search of arbitrarily structured XML documents on the one hand, and on a DWB-specific
set of subclasses (Taxi::Grimm) and configuration files on the other.

Each of the remaining sections of this document will focus on one specific subsystem.
Section 2 describes how to acquire current versions of the system components, and gives a
brief overview of the conventions used in and by the Taxi/Grimm CVS repository. Section 3
deals with corpus preparation with the build subsystem, section 4 contains a brief overview
of document loading and database administration with the indexing subsystem, and section
5 deals with the runtime subsystem.

2 Sources

All of the sources for the Taxi/Grimm system are available on the servers of the DWDS
project. Most of the sources are available via CVS:

export CVS RSH=ssh

export CVSROOT=:ext:USER@holodoc.woerterbuch-portal.de:/home/cvs

cvs co PROJECT

... where USER is replaced by a valid username on holodoc, and PROJECT is the name
of a Taxi/Grimm related CVS project. Currently, these are:

Project Name Description

grimm Build subsystem utilities, including Lingua::LTS

Taxi-Mysql Indexing and runtime perl sources
DDC-Perl Drop-in DDC wrapper daemon (alternate runtime engine)

The DWB SGML sources are not included in any of the above projects. They can be found
on the server kirk.bbaw.de in the directory:

/home/scratch/Austausch/fuer moocow/grimm

The most recent version of the DWB SGML sources at the time of this writing was:

grimm-sgml-2006-11-22.tar.gz

4



Jurish Grimm/Taxi HOWTO

2.1 Directory Layout

The most deeply nested project directory is the grimm/ directory. In each major sub-
directory of the grimm/, there is a file README.moo.txt which gives a brief overview of
the directory’s purpose, dependencies, contents, and usage. A minimal overview of the
directory structure under grimm/ is given in Table 2.1.

3 The Build Subsystem

The Grimm/Taxi build subsystem is responsible for converting raw SGML DWB source
documents to Taxi-XML format. At the time of this writing, build subsystem is still under
active development, and build conventions are subject to change as heuristics for extraction
of prose quotation evidence are integrated into the procedure. Check the contents of the
README.moo.txt file in the build directory for the most current information. This section
describes the Grimm/Taxi build subsystem as implemented and running on 1st January,
2007. Section 3.1 deals with the conversion of the SGML DWB sources to raw XML, while
section 3.2 is concerned with the conversion from raw XML to Grimm/Taxi-XML.

The Grimm/Taxi build subsystem is driven by a set of rules located in grimm/xml/Makefile,
which require GNU make for correct interpretation. All command-line examples in the
remainder of this section assume that the working directory is grimm/xml/. For fur-
ther information, see the comments in grimm/xml/Makefile and the user variables in
grimm/config/common.mak.

3.1 From SGML to Raw XML

The primary goal of the conversion of the DWB sources from SGML to raw XML is the
imposition of an easily parseable format with minimal information loss. At the time of
this writing, the following information in the original SGML sources is lost and/or modfied
during conversion to raw XML:

• The DTD in the SGML <!DOCTYPE . . .> declaration is set to MHDWB BBAW.dtd in
output XML. See sections 3.1.2 and 3.1.3 for details on XML DTDs.

• Typographical entities (e.g. &kurisv;, &recte;, &super;, &caps;, etc.) are con-
verted to <hi>. . .</hi> elements, whereby the &recte; entity is translated as a
close-tag “</hi>”; thus the SGML code:

&kursiv;Seite&recte; 7&Super;b&super;

is converted to the XML code:

<hi rend="kursiv">Seite</hi> 7<hi rend="super">b</hi>

5



Jurish Grimm/Taxi HOWTO

Directory Descrition

grimm Top-level directory for various tasks involving Grimm/DWB
sources and (potential) analyses & manipulations thereof.

grimm/bin Many useful (and some obsolete) scripts for hacking, mung-
ing, frobbing, tweaking, and/or twiddling Grimm/DWB
sources.

grimm/config Global configuration directory for Grimm/DWB stuff.
grimm/doc High-level documentation sources for Grimm/DWB stuff.
grimm/dtds Static and dynamically auto-generated XML DTDs for

Grimm/DWB XML.
grimm/dtds/entities Grimm entity resolution (UTF-8) and Latin-1 approxima-

tion tools live here.
grimm/dtds/unicode UTF-8 related sandbox. Can probably be eliminated en-

tirely. See ../entities for related stuff actually in use.
grimm/lts Top-level directory for building LTS (Letter-To-Sound) anal-

ysis transducers.
grimm/lts/Lingua-LTS Perl module sources for the Lingua::LTS module and support

scripts.
grimm/lts/bin Useful scripts for compiling LTS transducers.
grimm/lts/grimm Make directory for building Grimm/DWB LTS (Letter-To-

Sound) analysis transducer.
grimm/lts/ims-german Make directory for building IMS German Festival LTS

(Letter-To-Sound) analysis transducer.
grimm/morph Directory for finite-state morphology transducer files.

Empty in CVS:
grimm/notes This directory contains various notes. It probably should

not live in CVS, but it currently does.
grimm/sgml Directory containing Grimm/DWB SGML sources.
grimm/test This directory contains some test files and directories. It

definitely should not live in CVS, but it currently does.
grimm/tt Make directory for generating moot ”rare” and ”medium

rare” format files from Grimm raw XML sources. Rules and
code in this directory are quite old and are no longer used.
It can safely be ignored (probably).

grimm/xml This is a make directory for converting raw Grimm SGML
sources into Taxi-XML, via Raw XML. Older rules also sup-
port conversion to DDC ”Free Index” XML.

Table 1: Grimm/Taxi CVS directory layout

6



Jurish Grimm/Taxi HOWTO

• Output XML documents are well-formed: omitted close-tags for any open elements
are inserted, at the latest on encountering a close-tag for an entry element “</entry>”.

If all make variables are set correctly (see below), conversion to raw XML can be initiated
by calling:

bash$ make xml

in the grimm/xml directory. Details on some of the available make variables and rules are
presented in the following subsections.

3.1.1 SGML Sources

The rules in grimm/xml/Makefile expect all DWB SGML source files to be located in
the in the directory grimm/sgml/selected. In particular, grimm/xml/Makefile uses the
variables listed in Table 2, among others. Any or all of the build variables may be altered
on the command-line or by setting an environment variable of the same name. See the
make(1) manpage for details.

Variable Default Value Description

GRIMM ROOT $(HOME)/work/bbaw/grimm build root directory
GRIMM SGML ROOT $(GRIMM ROOT)/sgml DWB SGML root directory
GRIMM SGML DATA $(GRIMM SGML ROOT)/selected DWB SGML data directory
SGML SOURCES $(GRIMM SGML DATA)/*.sgm selected SGML sources
XML TARGETS $(SGML SOURCES:.sgm=.xml) selected XML targets

Table 2: Common variables used by the build subsystem

3.1.2 Static XML DTDs

The build subsystem uses the directory variables listed in Table 3 to search for required
static SGML and XML DTDs.

Variable Default Value Description

GRIMM SGML DTDS $(GRIMM SGML ROOT)/dtds DWB SGML DTDs
GRIMM EXTRA DTDS $(GRIMM ROOT)/dtds Static XML DTDs
TEI ROOT $(HOME)/local/share/tei TEI (p4) root
TEI DTDS $(TEI ROOT)/xml/teip4/schema/dtd TEI DTDs

Table 3: Static DTD variables used by the build subsystem

7



Jurish Grimm/Taxi HOWTO

The static DTD referenced by raw XML documents is MHDWB BBAW.dtd, which is located
in the $(GRIMM EXTRA DTDS) directory. Currently, MHDWB BBAW.dtd contains no structural
consraints, and thus does not allow validation. It does however include a reference to a
dynamically generated DTD for UTF-8 entity resolution. See the following section for
details.

3.1.3 The Entity Table and Dynamic XML DTDs

UTF-8 approximations of most character entities in the DWB SGML sources are pro-
vided by a dynamically generated XML entity definition DTD file MHDWB BBAW.ent, which
is included by MHDWB BBAW.dtd. The dynamic entity definition is specified by the make

variable GRIMM MOOHACK DTD, and is automatically generated by the build subsystem from
an “entity table” in native Perl syntax whose location is in turn specified by the make

variable GRIMM MOOHACK ETAB. Complete documentation of the syntax of the entity table
file and of the heuristics used to generate many of the UTF-8 approximations is beyond
the scope of this document; for details, see the source code, which is available in the file
grimm/dtds/entities/EntityTable.pm.

3.1.4 make Rules and Targets

The following is a partial list of make targets available in the grimm/xml/ build directory.
Targets listed with wildcards (one or more “*” characters) are applied to individual source
files or intermediate targets, thus the target listed as “*.xml” can be called as ga01.xml,
ga02.xml, . . ., gz25.xml; assuming that the sources ga01.sgm, ga02.sgm, . . ., gz25.sgm
exist in the appropriate locations.

Target Description

xml batch target for conversion to raw XML
all alias for xml
grimm-catalog.xml auto-generated XML DTD catalog file: this only

exists because the libxml2 on SuSE 9.2 is hopelessly
outdated

../dtds/MHDWB BBAW.ent auto-generated UTF-8 entity resolution file:
generation make rules are here, guts are in
../dtds/entities

g*.xml top-level raw XML target (link to g*.final.xml)
g*.errors top-level raw XML errors target (link to

g*.final.errors.xml)
*.dtd-hacked.sgml hacks SGML DTD name and hides entities in

comment nodes
*.sgml2xml.xml proto-XML generated by sgml2xml (from James

Clark’s SP package)

8



Jurish Grimm/Taxi HOWTO

Target Description

*.sgml2xml.errors errors reported by sgml2xml

*.doctype-hacked.xml hacks XML DTD name and restores entities hidden
in comments

*.xmllint.xml formatted raw XML with checked by xmllint (entities
still hidden)

*.xmllint.errors errors reported by xmllint (no entity-related errors)
*.tei.xml formatted raw XML with element names replaced by

teiform where applicable
*.ents.xml formatted raw XML with entities un-hidden and

un-resolved
*.raw.xml final formatted raw XML (re-checked by xmllint for

entity-safety)
*.raw.errors more errors reported by xmllint (including

entity-related errors)
*.final.xml placeholder target (link to *.raw.xml) for final raw

XML format
*.final.errors collected errors for SGML→XML translation of

corresponding file
*.fmt.xml XML pretty-printing via xmllint

*.nodtd.xml removes DOCTYPE declaration from *.xml

clean removes most generated files
realclean removes more generated files

Table 4: Selected SGML→XML targets in grimm/xml

3.2 From Raw XML to Taxi XML

Raw XML versions of the DWB sources can be extended with additional annotations in
order to facilitate indexing with a Taxi::Grimm and/or Taxi::Grimm2 XML index. For
use as source documents for a Taxi index, the raw XML DWB sources must be tokenized,
and ISO-8859-1 (“latin-1”) approximations of each recognied token must be computed.
Section 3.2.2 presents an overview of the tokenization procedures used by the build sub-
system. Tokenized Taxi-XML documents may be optionally “pruned” of unneeded text
nodes, as discussed in section 3.2.3. Additionally, each token in a Taxi-XML document
may be optionally annotated with a phonetic form and/or with one or more morpholog-
ical analyses, although by default such annotations will be re-computed during the Taxi
indexing phase (see section 4). Methods for adding optional annotations during the build
phase are discussed in sections 3.2.5 and 3.2.6. The make rules for generation of Taxi-XML
are summarized in Table 5.

9



Jurish Grimm/Taxi HOWTO

Target Description

taxi Batch rule for generation of all g*.taxi.xml files
g*.taxi.xml Placeholder target (link to

g*.taxi.tok.pruned.xl.xml)
*.noent.xml Pre-tokenization: character entities replaced by their

DTD expansions
*.taxi.tok.xml Taxi-tokenized XML
*.taxi.*.pruned.xml Taxi-XML pruned of non-header text nodes
*.taxi.*.xl.xml Taxi-XML with Latin-1 token text approximations
*.taxi.*.pho.xml (obsolete) Taxi-XML with phonetic form annoations
*.taxi.*.morph.xml (obsolete) Taxi-XML with morphological annoations

Table 5: Selected Taxi-XML targets in grimm/xml

3.2.1 Entity Resolution

The first required step in the generation of Taxi-XML is the replacement of all charac-
ter entities in the raw XML source document by their UTF-8 approximations using the
*.noent.xml target, thus the raw XML:

kein g&oaboveu;tig wort

might be converted to:

kein gůtig wort

3.2.2 Tokenization

Taxi index source documents must be tokenized before indexing. The build subsystem
supports tokenization of entity-free XML documents via the *.taxi.tok.xml target, which
calls the script $(GRIMM BIN)/grimm-taxi-tokenize.perl to perform the tokenization
into <w> elements with UTF-8 text attributes “u”; thus the raw XML:

kein gůtig wort

might be tokenized as:

<w u="kein"/> <w u="gůtig"/> <w u="wort"/>

10



Jurish Grimm/Taxi HOWTO

3.2.3 (Optional) Pruning

In the interest of keeping Taxi source files small, tokenized Taxi-XML documents may be
“pruned” of unneccessary text nodes via the *.taxi.tok.pruned.xml rule. Pruning is
applied by default.

3.2.4 Latin-1 Approximation

In order for analysis with the generated LTS transducer and/or the TAGH morpholog-
ical analysis transducer, each token element must be associated with a Latin-1 (ISO-
8859-1) approximation in its “l” (ell) attribute. Translation of UTF-8 approximations
to Latin-1 approximations is performed by a finite state transducer which is generated
from the entity table (see section 3.1.3), which is automatically generated and called by
the *.taxi.tok.pruned.xl.xml rule. The example tokens:

<w u="kein"/> <w u="gůtig"/> <w u="wort"/>

might appear after Latin-1 approximation as:

<w u="kein" l="kein"/>

<w u="gůtig" l="gutig"/>

<w u="wort" l="wort"/>

3.2.5 (Optional) Phonetic Analysis

Each token in a Taxi-XML source document may be optionally annotated with a phonetic
form in its “p” attribute. The build subsystem provides for phonetic analysis with a finite-
state letter-to-sound (LTS) transducer by means of the *.taxi.tok.pruned.xl.pho.xml

target. By default, phonetic analyses computed at build-time will be re-computed and
overwritten during the Taxi indexing phase (see section 4.3.1). A summary of the make

variables controlling build-time phonetic analysis is given in Table 6.

The example tokens:

<w u="kein" l="kein"/>

<w u="gůtig" l="gutig"/>

<w u="wort" l="wort"/>

might appear after phonetic analysis as:

<w u="kein" l="kein" p="k[aI]n"/>

<w u="gůtig" l="gutig" p="gutIC"/>

<w u="wort" l="wort" p="vO6t"/>

11



Jurish Grimm/Taxi HOWTO

Variable Default Value Description

GRIMM LTS ROOT $(GRIMM ROOT)/lts base dir
GRIMM LTS BIN $(GRIMM LTS ROOT)/bin script dir
GRIMM LTS LANG $(GRIMM LTS ROOT)/grimm “language” dir
GRIMM LTS DICT $(GRIMM LTS LANG)/lts-grimm.dict dictionary
GRIMM LTS FST $(GRIMM LTS LANG)/lts-grimm.gfst transducer
GRIMM LTS LAB $(GRIMM LTS LANG)/lts-grimm-latin1.lab labels
GRIMM LTS LABENC ISO-8859-1 label encoding

Table 6: Phonetic analysis variables used by the build subsystem

3.2.6 (Optional) Morphological Analysis

Similar to the case for LTS analysis, the Grimm/Taxi system can use a variant of the TAGH
finite-state morphology for morphological analysis of input tokens. Each token in a Taxi-
XML source document may be optionally annotated with zero or more morphological anal-
yses as child “ma” elements. The build subsystem provides for morphological analysis with a
TAGH-style finite-state transducer by means of the *.taxi.tok.pruned.xl.pho.morph.xml
target. By default, morphological analyses computed at build-time will be re-computed
and overwritten during the Taxi indexing phase (see section 4.3.2). A summary of the
make variables controlling build-time morphological analysis is given in Table 7.

Variable Default Value Description

GRIMM MORPH EOW % EOW marker
GRIMM MORPH FST $(GRIMM ROOT)/morph/mootm-stts-*.gfst transducer
GRIMM MORPH LAB $(GRIMM ROOT)/morph/mootm-stts.lab labels

Table 7: Morphological analysis variables used by the build subsystem

The exmple tokens:

<w u="kein" l="kein" p="k[aI]n"/>

<w u="gůtig" l="gutig" p="gutIC"/>

<w u="wort" l="wort" p="vO6t"/>

might thus appear after morphological analysis as:

<w u="kein" l="kein" p="k[aI]n">

<ma lemma="keine" pos="PIS" feat="[nom][sg][neut]"/>

<ma lemma="keine" pos="PIS" feat="[acc][sg][neut]"/>

<ma lemma="keine" pos="PISNEG" feat="[nom][sg][neut]"/>

12



Jurish Grimm/Taxi HOWTO

<ma lemma="keine" pos="PISNEG" feat="[acc][sg][neut]"/>

<!-- etc. -->

</w>

<w u="gůtig" l="gutig" p="gutIC"/>

<w u="wort" l="wort" p="vO6t">

<ma lemma="Wort" pos="NN" feat="[neut][sg][nom acc dat]"/>

</w>

3.3 Additional Build Targets

Several other output formats are supported by the make rules in grimm/xml/Makefile. In
particular, support is included for DDC XML with optional phonetic form annotations.
The make rules for generation of alternative targets are summarized in Table 8.

Target Description

ddc Batch rule for basic DDC XML in *.ddc.xml

ddc.pho Batch rule for extnded DDC XML in *.ddc.pho.xml

ddc-split (experimental) batch rule for DDC XML document
splitting into directory out/

g*.ddc.xml DDC-compatible XML format (basic)
g*.ddc.pho.xml DDC-compatible XML format with phonetic field

Table 8: Selected additional XML targets in grimm/xml

The ddc targets are designed to produce input documents acceptable to the DDC corpus in-
dexing system by Alexey Sokirko. A DDC wrapper daemon with support for “sounds-like”
queries based on an FST-derived phonetic field “pho” such as produced by the ddc.pho

target can be found in the CVS module DDC-perl. Note that unlike the Taxi system, the
DDC wrapper daemon requires runtime access to the phonetic analysis transducer. See
the ddc-lts-wrapper.perl manpage for details.

4 The Indexing Subsystem

The Grimm/Taxi indexing subsystem is responsible for creation and administration of a
MySQL database index of a tokenized corpus. The Taxi::MySQL Perl distribution provides
an abstract interface to MySQL database corpus indices, while the Taxi::MySQL::Grimm

and Taxi::MySQL::Grimm2 modules provide concrete implementations for corpora in the
Grimm/Taxi format. The sources for the indexing and runtime subsystems can be found
in the Taxi-Mysql CVS module. Most administration tasks described in this section can

13



Jurish Grimm/Taxi HOWTO

be accomplished by calls to the utility script taxi-admin.perl, which is included in the
Taxi::Mysql distribution.

4.1 Defining a New Index

Each Taxi index is defined by a configuration file in native perl syntax. The configuration
file must assign an index object as a value to the (local) variable $obj, usually by calling:

my $obj = Taxi::Mysql->new(%keyword arguments);

Common arguments to Taxi::Mysql::new include:

• prefix => $prefix

Causes $prefix to be prefixed to all table names maintained by this Taxi index.
Default=’ taxi ’.

• handleArgs => \%handleArgs
Arguments for the underlying database handle, especially dsn => $dbi dsn string.

Particularly useful is the ability to specify MySQL client configuration files and client
tags in the DBI DSN string. For instance, if you specify:

handleArgs => {

dsn=>("DBI:mysql:"

."mysql_read_default_file=~/.my.cnf;"

."mysql_read_default_group=grimmTaxi;")

}

and your /.my.cnf contains a grimmTaxi section such as:

[grimmTaxi]

host = localhost

database = myschema

user = myuser

password = mypassword

. . . then the underlying database is assumed to be on the local machone localhost,
in the schema myschema, and will be accessed as the user myuser with password
mypassword.

See Taxi::Mysql::Handle(3pm) for details.

• dbEncoding => $encoding

Assumed encoding of underlying database strings (perl side). $encoding should be
some encoding known to the perl Encode module. The actual encoding conventions
must match those of the MySQL $charset (see below). Default=’UTF-8’

14



Jurish Grimm/Taxi HOWTO

• dbCharset => $charset

Encoding of underlying database strings (mysql side). Default=’utf8’

Beware: Bad things will happen if the value of $charset does not match the de-
fault character set of the underlying MySQL schema. You can change the MySQL
schema character set “by hand” by executing the SQL query (e.g. in the mysql client
program):

alter database SCHEMA charset CHARSET;

If you get a lot of funny looking characters where you expect diacritics, this may be
what’s biting you.

• tables => %tableName2tableSpec

Specifies source document and index structure. This is where all of the interesting
configuration takes place. See the Taxi::Mysql::Table manpage for details. For
examples, see the default table specifications in the table keyword arguments in the
new() methods for the Taxi::Mysql::Grimm and/or Taxi::Mysql::Grimm2 classes
in the Taxi-Mysql CVS module.

• queryArgs => %queryArguments

Specify some default arguments to pass when creating new Query objects. Useul
keywords in %queryArguments include:

pagesize => $n, ##-- defalt number of hits per page

default_table => $tabName, ##-- default ’token’ table name

default_hit => $refName, ##-- default hit container name

• hitTables => hitTables

List of tables to join into the dataset returned for each hit. Default joins on all tables
defined by the index.

• extraHitColumns => [ [$tab,$col], ... ]
Specify additional columns to include in the dataset returned for each hit. Default
is all ’attr’-type columns in any hit table.

• fmtClass => $defaultFormatClass

Specify default class to use for formatting hit results. $defaultFormatClass should
be a descendant of (or at least conform to the API specified by) the Perl class
Taxi::Mysql::Format::Base.

• fmtArgs => %formatArgs

Specify additional options to pass to (any) hit formatter’s new() method.

Formatter arguments can be used for instance to set output encoding, change default
XML element names, apply XSLT fragments, select bibliographic data for display,
etc.

15



Jurish Grimm/Taxi HOWTO

See Taxi::Mysql::Format::Base(3pm) and subclasses for details on known argu-
ments.

For details on index options and subclasses, see the Taxi::Mysql, Taxi::Mysql::Grimm,
and/or Taxi::Mysql::Grimm2 manpages, and/or the configuration files zzz-grimm.PL and
zzz-grimm2.PL in the Taxi-Mysql CVS module.

The remainder of this section will assume an index configuration file index.PL. Assuming
such a file exists in the current directory, the underlying MySQL database index can be
created by:

bash$ taxi-admin.perl -i index.PL create

If an underlying MySQL database is no longer needed, it can be removed with:

bash$ taxi-admin.perl -i index.PL drop

4.1.1 Taxi::Mysql::Grimm2 Extensions

The Taxi::Mysql::Grimm2 module accepts the following additional keyword arguments
to its new() method:

• lemmaEditCostMatch => $cost

Cost of a literal character match for the edit-distance lemmainstantiation heuristic.

Default=0.

• lemmaEditCostInsert => $cost

Cost of a single character insertion for the edit-distance lemmainstantiation heuristic.

Default=1

• lemmaEditCostSubst => $cost

Cost of a single character substitution for the edit-distance lemmainstantiation heuris-
tic.

Default=1.2

• lemmaEditMaxDistSql => $sqlFragment

MySQL fragment to compute maximum acceptable edit-distance cost given a lemma
in the MySQL variable lemma and an orthographic word type in the MySQL variable
text for the edit-distance lemma instantiation heuristic. May be undef indicating
no maximum.

Default=’LEAST(LENGTH(lemma),LENGTH(text))-1’

16



Jurish Grimm/Taxi HOWTO

• lemmaEditRestrict => $sqlFragment

MySQL fragment to compute restrictions on valid lemma instantiations. May use
the following variables, for a lemma type ℓ and an instance-type i:

Variable Formula Range Description

li.sim sim(ℓ, i) [0, 1] unit-normalized edit-
distance similarity

li.freq f(ℓ, i) N raw joint frequency
li.mi bits I(ℓ, i) R pointwise mutual informa-

tion (bits)

li.mi by l I(i|ℓ) = I(ℓ,i)−min I(ℓ,∗)
max I(ℓ,∗)−min I(ℓ,∗)

[0, 1] MI unit-normalized by
lemma-type

li.mi by i I(ℓ|i) = I(ℓ,i)−min I(∗,i)
max I(∗,i)−min I(∗,i)

[0, 1] MI unit-normalized by
instance-type

li.score bits sim(ℓ, i) × I(ℓ, i) R raw score (pseudo-bits)
li.score by l sim(ℓ, i) × I(i|ℓ) [0, 1] score unit-normalized by

lemma-type
li.score by i sim(ℓ, i) × I(ℓ|i) [0, 1] score unit-normalized by

instance-type

li.score avg
sim(ℓ,i)×(I(i|ℓ)+I(ℓ|i))

2
[0, 1] symmetric average unit-

normalized score

See Taxi-Mysql/Grimm2.pm for current default value.

• lemmaEditOrderBy => $sqlFragment

MySQL ORDER BY fragment which sorts (lemma, instance) pairs (ℓ, i) in descending
order of the estimated likelihood that the instance component i is in fact an instance
of the lemma component ℓ.

Default=’li.score avg DESC’.

• ltsFstFiles => %ltsFstFiles

Hash-reference specifying locations of the letter-to-sound tranducer files. Use of an
LTS FST requires libgfsm, the Perl Gfsm module, as well as the Perl Lingua::LTS
module (included in the grimm CVS project under grimm/lts/Lingua-LTS).

%ltsFstFiles accepts the following keys:

– fst => $fstFile

Filename of the LTS transducer, in binary GFSM format.

Default=’lts-grimm.gfst’

– lab => $labFile

Filename of the LTS transducer alphabet.

Default=’lts-grimm.lab’

17



Jurish Grimm/Taxi HOWTO

– dict => $dictFile

Filename of the LTS exception dictionary. May be undef to use FST results
exclusively.

Default=’lts-grimm.dict’

• ltsFstArgs => %ltsFstArgs

Additional arguments to Lingua::LTS::FST::new() for the LTS transducer. The
defaults should be sensible.

• morphFstFiles => %morphFstFiles

Hash-reference specifying locations of the morphological analysis tranducer files. Use
of a morphology FST requires libgfsm, the Perl Gfsm module, as well as the Perl
Lingua::LTSmodule (included in the grimm CVS project under grimm/lts/Lingua-LTS).

%morphFstFiles accepts the following keys:

– fst => $fstFile

Filename of the morphology transducer, in binary GFSM format.

Default=’morph-grimm.gfst’

– lab => $labFile

Filename of the morphlogy transducer alphabet.

Default=’morph-grimm.lab’

– dict => $dictFile

Filename of the morphological analysis exception dictionary. May be undef to
use FST results exclusively.

Default=’morph-grimm.dict’

4.2 Loading Corpus Data

Corpus data may be loaded into an existing index by means of the load command to
taxi-admin.perl. Assuming a valid index file index.PL and corpus files c1.xml and
c2.xml, the command:

bash$ taxi-admin.perl -i index.PL load c1.xml c2.xml

will cause the corpus files c1.xml and c2.xml to be parsed and uploaded to the MySQL
database specified by index.PL.

Warning: the taxi-admin.perl “load” command is not incremental: loading new doc-
uments into an existing index currently clears any and all data previously stored in that
index!

18



Jurish Grimm/Taxi HOWTO

Note that the load command to taxi-admin.perl calls LOAD DATA INFILE on the backend
MySQL server, which requires that the executing MySQL user have the server-global FILE
privilege. If you get permission errors, this might be why.

A number of options are available for the load command. See the taxi-admin.perl

manpage, as well as the documentation of the Taxi::Mysql::loadData() method and of
the dedicated loader class Taxi::Mysql::Loader for more information.

4.3 Analyzing Corpus Data

During the course of corpus parsing and upload, a number of temporary files are created.
Taxi index subclasses may implement and/or override special analysis subroutines to alter
these files prior to upload. Additionally, Taxi index subclasses may provide methods for
post-upload analysis of an already populated MySQL database. In general, pre-upload
analysis routines are implicitly invoked by the load command, but can also be called
separately by:

bash$ taxi-admin.perl -i index.PL analyze

Post-upload routines should never be implicitly invoked by the load command, but must
be invoked separately after uploading, by:

bash$ taxi-admin.perl -i index.PL dbanalyze

One common idiom is to immediately call post-upload analysis routines after loading, by:

bash$ taxi-admin.perl -i index.PL load corpus/*.xml , dbanalyze

The Taxi::Mysql::Grimm and Taxi::Mysql::Grimm2 index subclasses offer both pre- and
post-upload analysis routines, which are described in the following subsections.

4.3.1 Letter-to-Sound (LTS) Analysis

Letter-to-Sound analysis assigns a unique phonetic form to each orthographic word type in
the corpus to be uploaded. LTS analysis is currently implemented as a pre-upload analysis
hook in the Taxi::Mysql::Grimm2::analyzeLTS() method, which uses the LTS analysis
transducer configuration specified by the ltsFst* keyword arguments to the constructor
Taxi::Mysql::Grimm2::new().

4.3.2 Morphological Analysis

Morphological analysis assigns zero or more morphological analyses to each orthographic
word type in the corpus to be uploaded. Morphological analysis is currently implemented

19



Jurish Grimm/Taxi HOWTO

as a pre-upload analysis hook in the Taxi::Mysql::Grimm2::analyzeMorph() method,
which uses the morphological analysis transducer configuration specified by the morphFst*
keyword arguments to Taxi::Mysql::Grimm2::new().

4.3.3 Type-Wise Analysis

Various properties of orthographic word types in the type table are computed by the post-
upload analysis hook Taxi::Mysql::Grimm2::analyzeTypes(). Such properties include:

• freq: observed frequency

• isalpha (boolean): true if the type’s orthographic form contains only alphabetic
characters (i.e. if the type looks like something the morphology “ought” to know
about).

• haspmorph (boolean): true if any phonetic variant of the type has at least one mor-
phological analysis.

4.3.4 Edit-Distance Lemma Instantiation Heuristics

Edit-distance lemma instantiation heuristics are an experimental feature introduced in
Taxi::Mysql::Grimm2 for estimating which (phonetic) types ocurring within an <entry>

element for a given lemma might be considered instances of that lemma. The heuristic
classifies that phonetic type i in each individual block a of quotation evidence as an instance
of the lemma ℓ with which that block is associated for which the likelihood L(ℓ, i) of i

instantiating ℓ is maximal among all types occurring in a, and for which L(ℓ, i) does not
exceed user-specified bounds parameterized by the lemma and the argument type.

Lemma instantiation heuristics populate the lemmatype field of the add table with that
instance type i occurring the add element a which best instantiates the lemma ℓ of the
entry e containing the a, for A the set of all word types and L the set of all entry lemmata:2

lemmatype(a) = arg max
w∈A:a�∗w

L(pho(w), pho(lemma(entry(a))))

where:

L(i, ℓ) =
sim(ℓ, i) × (I(ℓ|i) + I(i|ℓ))

2

2The formulae given above are incomplete in many respects. Note in particular that the user-specified
upper bound lemmaEditMaxDistSql on “acceptable” edit distances, as well as the lemmaEditRestrict

parameter on “acceptable” likelihoods are not included in these formulae, and that these parameters may
cause an add element to have no “best” lemma-instantiating type at all. In such cases, lemmatype(a) is
set to 0 (zero).

20



Jurish Grimm/Taxi HOWTO

sim(ℓ, i) =
lemmaEditMaxDist(ℓ, i) − EditDistance(ℓ, i)

lemmaEditMaxDist(ℓ, i)

lemmaEditMaxDist(ℓ, i) = min{|ℓ|, |i|} − 1

I(i|ℓ) =
I(ℓ, i) − min I(ℓ,A)

max I(ℓ,A) − min I(ℓ,A)

I(ℓ|i) =
I(ℓ, i) − min I(L, i)

max I(L, i) − min I(L, i)

I(ℓ, i) = log2

P(ℓ, i)

P(ℓ)P(i)

P(ℓ, i) =
|{x ∈ Tok : x ∼= i & entry(ℓ) �

∗ x}|

|Tok|

P(ℓ) =
∑

i

P(ℓ, i)

P(i) =
∑

ℓ

P(ℓ, i)

The lemmavariant table is populated from the lemmatype table by inserting a pair (ℓ, i)
for every pair of orthographic types which are conflated by these heuristics.

Edit distance lemma instantiation heuristics are currently implemented as a post-upload
analysis hook in the Taxi::Mysql::Grimm2::dbAnalyzeTypes() method, which makes
use of the lemmaEdit* keyword arguments to Taxi::Mysql::Grimm2::new(). Use of edit-
distance lemma instantiation heuristics requires the PDL::EditDistance module, available
from http://www.ling.uni-potsdam.de/˜moocow/projects/perl.

4.3.5 Morphological Coverage Summary

A number of informative statistics on breadth of the morphological coverage are gathered
automatically by the post-upload analysis hook Taxi::Mysql::Grimm::dbAnalyzeCoverage().
Currently, this method just populates the database’s coverage table. See the comments
associated with the coverage table in the Taxi-Mysql/Mysql/Grimm2.pm sources.

4.4 Importing and Exporting Indices

For archiving purposes, as well as to facilitate use of identical Taxi indices on multiple
hosts (i.e. for load distribution), any existing Taxi index may be exported to the local
filesystem by means of the export command to taxi-admin.perl:

bash$ taxi-admin.perl -i index.PL -data-dir=./exported export

21

http://www.ling.uni-potsdam.de/~moocow/projects/perl


Jurish Grimm/Taxi HOWTO

The export command creates one TAB-separated text file (.txt) for each table in the
index’s inventory, as well as an SQL script “import.sql” in the data export directory
specified by the -data-dir option.

Exported index data may be (re-)loaded into the backend database server by the import

command to taxi-admin.perl on the same index specification file used for export. Using
the above example:

bash$ taxi-admin.perl -i index.PL -data-dir=./exported import

Alternately, the exported import.sql script can be used without the need for calling
taxi-admin.perl to re-create and upload the exported data:

bash$ mysql -B SCHEMA < ./exported/import.sql

. . . of course, any subsequent Taxi queries require a valid Taxi::Mysql index, so hopefully
you saved the index.PL with which your data was created when you exported the data
too. . .

5 The Runtime Subsystem

5.1 Taxi Query Language

The Taxi query language is a high-level PROLOG-like language for expressing queries over
a Taxi-indexed corpus, specifically designed for querying sequential text corpora whose
basic elements are tokens. Taxi queries are expanded into SQL in two phases:

• Hit acquisition phase: The initial Taxi query is expanded into an SQL query which
is assumed to return one row for each hit, together with a perl-parseable comma-
separated row of independent variable (token) identifiers (primary keys) indicating
which rows of the independent data rows (which tokens) triggered the match (used
for highlighting).

• Hit population phase: For each hit returned by the initial query, an additional
query may be constructed & sent to the backend database in order to collect more
specific information on the hit in question.

Taxi queries are implemented as perl objects inheriting from the class Taxi::Mysql-

::Query::Base. Queries in the native syntax are parsed using the lexer/parser pair in
the classes Taxi::Mysql::YYLexer and Taxi::Mysql::YYParser, respectively. Query in-
terpretation constraints and other high-level routines are located in Taxi::Mysql::Query-

::Parser, which simultaneously serves to define a high-level API for support of alterna-
tive query languages. Each “hit” retrieved is implemented as a Taxi::Mysql::Hit object,
which may be collected into a “page” of hits represented as a Taxi::Mysql::HitList.

22



Jurish Grimm/Taxi HOWTO

For details on the implementation and use of the Taxi::Mysql query API, see the relevant
manpages. For details on Taxi’s native query syntax, see the file doc/queryhelp.html in
the Taxi-Mysql distribution.3.

5.2 Direct Index Access

A Taxi index may be queried directly with the command-line program taxi-query.perl,
included in the Taxi distribution. The general form of an incantation is:

taxi-query.perl -index=INDEX FILE OPTIONS QUERY

Assuming an index configuration file index.PL as described in Section 4.1, the incantaton
is:

taxi-query.perl -index=index.PL OPTIONS QUERY

where OPTIONS are zero or more options, and QUERY is a query in the native Taxi query
syntax (cf. Section 5.1).

Some of the more useful options to taxi-query.perl are:

-help
Display a brief help message.

-index=INDEX FILE

Query the index stored in INDEX FILE. This option is required.

-pagesize=SIZE

Specify the maximum number of hits per page. May be set to 0 (zero) to retrieve all
hits.

-pagenum=NUM

Specify the first page number to display, counting from 0 (zero). Default=0.

-format-class=CLASS NAME OR SUFFIX

Format hits using the formatter class CLASS NAME OR SUFFIX. Predefined for-
matter classes include the following (short names appear in parentheses on the far
right):

• Taxi::Mysql::Format::Text (Text)
Raw text formatter. Very informative, but very ugly.

3You may have to generate it first with xsltproc, but there’s a Makefile which ought to take care of
that for you in doc/Makefile.

23



Jurish Grimm/Taxi HOWTO

• Taxi::Mysql::Format::Text1 (Text1)
One-hit-per-line text formatter. Still pretty ugly.

• Taxi::Mysql::Format::TextBibl (TextBibl)
Human-readable text formatter (default).

• Taxi::Mysql::Format::XML (XML)
Flat XML record list formatter.

• Taxi::Mysql::Format::XMLBibl (XMLBibl)
XML formatter with bibliographic metadata headers for each hit.

• Taxi::Mysql::Format::HTML (HTML)
Default HTML formatter.

-format-option=OPTION=PERL CODE

Override default formatter options for a predefined formatter class. See formatter
class manpages for details.

-format-file=FORMAT FILE

Format with a user-defined formatter object read from FORMAT FILE. Useful when
the predefined formatter classes aren’t enough. In conjunction with the abstract
Taxi::Mysql::Format::XSLT and Taxi::Mysql::Format::XSLTBibl classes, may
be used to apply an arbitrary user-defined XSL stylesheet to one of the XML or
XMLBibl formats, especially dynamically generated stylesheets or stylesheets with
bound perl functions. See the Taxi::Mysql::Format::HTML class for an example of
these techniques.

-output=OUTPUT FILE

Send formatted hit output to OUTPUT FILE, rather than standard output.

-tracefile=TRACE FILE

Record all SQL queries sent to backend MySQL server in TRACE FILE. Useful for
debugging.

5.2.1 Examples

• Query index from index.PL, retrieving the first 10 occurrences of the orthographic
type “rabe”, formatting as human-readable text to standard output:

taxi-query.perl -i=index.PL -ps=10 -pn=0 -fc=TextBibl "rabe"

• Query index.PL, retrieving all occurrences of ”rabe” as 1-hit-per-line text:

taxi-query.perl -i=index.PL -ps=0 -fc=Text1 "rabe"

• Query index.PL, retrieving all occurrences of ”rabe” as bibliographically annotated
XML to the file ”rabe.xml”:

24



Jurish Grimm/Taxi HOWTO

MySQL DB

Taxi::Mysql::Query Taxi::Mysql::HitList

Taxi::Mysql::Query::Parser Taxi::Mysql::Format

index.PL server.PL

Remote Client

taxi−server.perl

SQL Query(ies) DBI Handle(s)

Taxi Perl API

HTTP GET or POST HTTP Response

Figure 2: Grimm/Taxi Server Architecture

taxi-query.perl -i=index.PL -ps=0 -fc=XMLBibl -o=rabe.xml "rabe"

• ... retrieve only up to 42 hits, and format as a flat list of XML records:

taxi-query.perl -i=index.PL -ps=42 -fc=XML -o=rabe.xml "rabe"

• ... format as HTML and store in ”rabe.html”:

taxi-query.perl -i=index.PL -ps=42 -fc=HTML -o=rabe.html "rabe"

5.3 Server-Based Index Access

In addition to command-line based direct index access using taxi-admin.perl and the
Taxi Perl API itself, Taxi indices may be queried using a standalone HTTP server taxi-server.perl,
which itself wraps the perl class Taxi::Mysql::Server. Client queries are sent to the Taxi
server using HTTP GET and/or POST methods. The Taxi server itself then parses the query
and fetches a hit-list from the backend MySQL server. Hit lists are formatted and returned
to the remote client via HTTP. See Figure 2 for a graphical portrayal.

25



Jurish Grimm/Taxi HOWTO

5.3.1 Server Configuration

In addition to an index configuration file index.PL as described in Section 4.1, a Taxi
server may also make use of a server configuration file. A server configuration file is a just
a Perl source file which assigns a Taxi::Mysql::Server object as a value to the (local)
variable $obj, usually by calling:

my $obj = Taxi::Mysql::Server->new(%keyword arguments);

Common arguments to Taxi::Mysql::Server::new include:

• index => $INDEX

Underlying Taxi::Mysql index object. You might just want to load index.PL here,
e.g. with:

my $ix = Taxi::Mysql->loadFile("index.PL")

or die("load failed for index.PL: $!");

my $obj = Taxi::Mysql::Server->new(index => $ix, %et cetera);

• uris => \%PATH TO CONFIG

Maps local URI paths to configurations which determine how the server will respond
to matching URIs. See the Taxi::Mysql::Server documentation and sources for
details.

A server should define at least one URI of type query (expanding to an object of
type Taxi::Mysql::Server::URI::query) in order to provide query-level access to
an underlying Taxi::Mysql index.

• daemonArgs => \%ARGS
Arguments to HTTP::Daemon->new(), which may include:

– LocalAddr => $LOCAL IP OR HOSTNAME

IP or hostname of the local interface on which the server should listen for in-
coming queries.

– LocalPort => $LOCAL PORT OR SERVICE

Port number or service name of the local port on which the server should listen
for incoming queries.

– ReuseAddr => $BOOL

You probably want to set this to a true value. Really.

See the IO::Socket::INET(3pm) manpage and/or the socket.h(7) manpage
and/or the documentation of your system’s C library for more details.

• daemonMode => $mode

One of “fork” or “serial”. Default is “serial”.

26



Jurish Grimm/Taxi HOWTO

• allow => \@allow ip regexes

Always allow queries from these clients (default: empty).

See “deny” for allow/deny semantics.

• deny => \@deny ip regexes

Deny queries from these clients, unless they are explicitly allowed (default: empty).

Queries from a client are allowed if and only if:

ip(client) ∈ Allowed or ip(client) 6∈ Denied

... that is, if the client’s IP matches any regular expression in @allow ip regexes,
then a query from the client is explicitly allowed. Otherwise, if the client’s IP does
matches any regular expression in @deny ip regexes, then a query from the client
is explicitly disallowed. Otherwise, a query from the client is implicitly allowed.

• fmtClass => $FORMAT CLASS

Set default hit formatter class.

• fmtArgs => \%FORMAT ARGS

Set default hit formatter arguments.

5.3.2 Running the Server

The program taxi-server.perl is provided as a standalone Taxi index server. A typical
server startup call looks like:

taxi-server.perl -config=SERVER CONFIG OPTIONS

This, if your server configuration file is located in server.PL, the call becomes:

taxi-server.perl -config=server.PL OPTIONS

Some useful options to taxi-server.perl include:

-help
Display a brief help message.

-config=SERVER CONFIG FILE

Load server configuration from SERVER CONFIG FILE.

-index=INDEX CONFIG FILE

Load index configuration from INDEX CONFIG FILE. May be used to override a
value set in SERVER CONFIG FILE, if any.

27



Jurish Grimm/Taxi HOWTO

-fork, -nofork
Set or override default daemon mode (forking or serial).

-daemon-host=HOST

Override the local interface on which to listen (default: all interfaces).

-daemon-port=PORT

Set or override the local port on which to listen (default: 8080).

-daemon-option=OPTION=VALUE

Set or override other HTTP::Daemon options.

-logfile=LOG FILE

Name of file to which server activity will be logged, in place of STDERR.

5.3.3 Querying the Server

To send a query to a running Taxi server, a client need only send a specially formatted
HTTP request (using either the GET or the POST method) to the host and port on which
the server is listening. The client should request a URI configured in the server as a query

URI, and the request should include a query variable whose value is the Taxi native query
string. Supported HTTP request variables include:

• query=QUERY

Client query in native Taxi syntax. QUERY may use XML-style literal character
entities (decimal or hexidecimal escapes) anywhere in the query.

• pagenum=NUM

Request page number NUM of hits.

• pagesize=SIZE

Request pages of up to SIZE hits per page. SIZE may be set to zero to indicate no
maximum.

• formatClass=CLASS

Specify formatter class. CLASS must be the name of a pre-loaded hit formatter class
which respects the Taxi::Mysql::Format::Base API conventions.

Here is an example script to query a Taxi::Mysql::Server running on localhost port
8080 with a query URI at path ’/qpath’:

#!/usr/bin/perl -w

use LWP::UserAgent;

28



Jurish Grimm/Taxi HOWTO

use HTTP::Request::Common;

$server = "http://localhost:8080/qpath"; # base server URL

$fmt = ’TextBibl’; # formatter class

$query = "token.type.text=’rabe’"; # Taxi query string

$url = ($server # full query URL

. ’?query=’ . uri_escape($query)

. ’&formatClass=’ . uri_escape($fmt)

);

$ua = LWP::UserAgent->new(); # user agent

$response = $ua->request(GET($url)); # ... The Answer

print $response->as_string, "\n"; # ... as a string

5.3.4 Grimm HTML GUI

The Taxi::Mysql::Grimm and Taxi::Mysql::Grimm2 subclasses introduce a serverl ad-
ditional URI subclasses, notably the Taxi::Mysql::Server::URI::Grimm2::WordInfo

subclass for detailed information on single (orthographic) word types, as well as the
Taxi::Mysql::Server::URI::Grimm2::Status subclass for dynamically generated sum-
maries of database content and basic coverage statistics. See the source code for details.

29


	Introduction
	Sources
	Directory Layout

	The Build Subsystem
	From SGML to Raw XML
	From Raw XML to Taxi XML
	Additional Build Targets

	The Indexing Subsystem
	Defining a New Index
	Loading Corpus Data
	Analyzing Corpus Data
	Importing and Exporting Indices

	The Runtime Subsystem
	Taxi Query Language
	Direct Index Access
	Server-Based Index Access


